
Generating High Performance Code for Irregular
Data Structures using Dependent Types

Federico Pizzuti

The University of Edinburgh

Edinburgh, Scotland, United Kingdom

federico.pizzuti@ed.ac.uk

Michel Steuwer

The University of Edinburgh

Edinburgh, Scotland, United Kingdom

michel.steuwer@ed.ac.uk

Christophe Dubach

McGill University

Canada

christophe.dubach@mcgill.ca

Abstract
Parallel architectures offer high performance but are chal-

lenging to program. Data parallel functional languages offer

a solution by providing a high-level programming model to

work with accelerators such as GPUs. Existing languages are

designed to work with dense arrays, limiting their usefulness

in expressing irregular data structures, such as graphs and

sparse matrices important in many application domains.

This paper addresses this limitation by extending a data-

parallel language with limited dependent types, including po-
sition dependent arrays and dependent pairs to model irreg-

ular data structures. The approach is demonstrated through

three case studies: dense to sparse matrix conversion, sparse

matrix-vectormultiplication, and parallel breadth-first search.

Experimental results show that this approach outperforms

state-of-the-art implementations on GPUs. Compared to

Nvidia’s cuSparse, our automatically generated code achieves

an average speedup of 1.2× for dense to sparse matrix con-

version and 1.3× for sparse matrix-vector multiplication.

CCS Concepts: • Software and its engineering → Com-
pilers; Parallel programming languages; • Theory of
computation → Type theory.

Keywords: Irregular Data Structures, Dependent Types

ACM Reference Format:
Federico Pizzuti, Michel Steuwer, and Christophe Dubach. 2021.

Generating High Performance Code for Irregular Data Structures

using Dependent Types. In Proceedings of the 9th ACM SIGPLAN
International Workshop on Functional High-Performance and Numer-
ical Computing (FHPNC ’21), August 22, 2021, Virtual, Republic of
Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3471873.3472977

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

FHPNC ’21, August 22, 2021, Virtual, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8614-2/21/08. . . $15.00

https://doi.org/10.1145/3471873.3472977

1 Introduction
Modern parallel hardware offers great opportunities for per-

formance. Programming such platforms is a however a chal-

lenging task even for the experienced programmer, particu-

larly as they expose a low-level interface. Parallel program-

ming is an inherently complex task, further complicated by

each platform’s specific details. The lack of higher-level ab-

stractions in these low-level languages gives the programmer

few tools to control this complexity.

A trend in addressing these problems has been the de-

velopment of specialized high-level functional languages,

targeting such devices. Many examples have been developed

in recent years, including Accelerate[11],Futhark [8], Single
Assignment C [17] Lift [18, 19] and Rise [5]. These languages
combine functional and array programming paradigms, lever-

aging expressive type systems to achieve both efficient code

generation in the parallel context, and correctness in the

presence of the targeted platforms’ many constraints.

Traditionally, such languages have focused on computa-

tions over data with regular layouts that are used pervasively

in many application domains. Simple yet simultaneously flex-

ible, regular multi-dimensional arrays allow for a convenient

and well-understood programming style.

However, there are important domains that naturally op-

erate on irregularly structured data, many of interest to the

high-performance computing community. Such domains in-

clude Sparse Linear Algebra and Graph Algorithms. For ap-

plications belonging to these domains, being limited to dense,

regular data structures imposes unacceptable performance

and expressiveness penalties.

Recent work has shown how it is possible to express

programs operating on irregular arrays with a statically-

known shape expressed using a limited form of dependent

types [14]. This work has been extended to cover computa-

tions over sparse data structures with dynamic shapes [15],

while still preserving a compilation model that can produce

high-performance implementations.

Unfortunately, the prior work has a significant limitation

that prevents the expression of many irregular applications:

so far, irregular data structures can only be consumed as

input but never be produced as an output of a program. This

limitation comes from the dependent types that are used

to model irregular data structures: dependent functions and
position dependent arrays are used together to express the

https://orcid.org/0000-0001-5048-0741
https://doi.org/10.1145/3471873.3472977
https://doi.org/10.1145/3471873.3472977
https://doi.org/10.1145/3471873.3472977

FHPNC ’21, August 22, 2021, Virtual, Republic of Korea Federico Pizzuti, Michel Steuwer, and Christophe Dubach

dependencies between multiple parameters that are passed

separately to the program representing the values stored

in the data structure and metadata explaining the shape of

the irregular data structure. Returning a position dependent
array from a program in a type-safe way is not possible, as

it contains universally quantified identifiers introduced by

the dependent functions.
This paper overcomes this significant limitation and — for

the first time — provides a universal solution for generating

high-performance code for applications with irregular data

structures by leveraging dependent types. We built upon

the prior work and add a limited form of dependent pairs
that still permits high-performance code generation. This

existentially qualified type allows irregular data structures

to be produced and returned as an output from a program.

We demonstrate their use and interactions with other depen-

dent types to implement algorithms operating over irregular

data structures, including programs not previously express-

ible. Our implementation of dependent pairs differs from the

canonical versions found in mainstream dependently typed

languages such as Idris [2] or Agda [13], as it includes spe-
cific solutions enabling the generation of high-performance

parallel GPU code. Finally, we demonstrate using three case

studies competitiveness with state-of-the-art low-level hand-

written implementations.

In summary, this paper makes the following contributions:

• present the first data parallel functional programming

language with universal support for irregular data

structures by using dependent types (Sections 2 & 3),

• demonstrate the use of the language to implement

programs consuming and generating irregular data

structures in three case studies: dense to csr matrix
conversion, csr sparse matrix vector multiplication and

breath first search frontier expansion (Section 4),

• discuss compilation challenges and techniques to over-

come them, focusing on GPU compilation (Section 5),

• experimentally evaluate the case studies by comparing

the generated code against state-of-the-art low-level

handwritten implementations (Section 6).

2 Language Overview
In this section, we present our functional array programming

language that builds upon prior work presented in [5, 14] and

[15]. We introduce the language’s type system and primitives

here as technical background, highlighting the existing de-

pendent types. We extend them in Section 3 with dependent

types and primitives that allow to produce and return irreg-

ular data structures from programs. The language presented

in this section and the following one provides universal sup-

port for generating high-performance code for applications

operating on irregular data structures.

We start by presenting the type system before introducing

common data parallel primitives and their types.

2.1 Type System
Figure 1 shows the well-formedness rules of our type system.

We useKinds (1a) for introducing a limited form of dependent

types that still permits high-performance code generation. Δ
introduced in Figure 1b is the kinding environment containing
mappings of type variables and their kinds.

The first kind are natural numbers (nat). We consider two

nats equal if they are equal in their intepretation as natural

numbers. Figure 1d shows the well-formedness of natural

numbers, including literals, binary expressions, and the re-

sults of a type-level function application.

We introduce two different kinds of type-level functions

(Figure 1e): functions mapping natural numbers to natural

numbers (nat→nat) and functionsmapping natural numbers

to data types (nat→data).
Figure 1f shows the data types: scalar types, index types

idx[𝑛] representing a number smaller than𝑛, array types 𝑛•𝑇
representing𝑛 elements of type𝑇 , pair types, nat→data type-
level function application, and, finally, position dependent
array types.

Position Dependent Array Types. Expressed as 𝑛••𝑖 ↦→
𝑇 , these are arrays in which the element type depends on

its position within the array. The dependence is statically

known: 𝑖 ↦→ 𝑇 is the notation for a type-level function

nat→data.
As arrays are the only data type parametric on nat expres-

sions and the language disallows matching over the number

to return disjoint types, Position dependent arrays are imple-

mented as contiguous array of the innermost scalar element

type: a zero-cost abstraction without additional metadata.

Position dependent arrays are a superset of ordinary arrays.
The language therefore provides a primitive, asDepArray,

which interprets an ordinary array to a dependent one, al-

lowing for the use of a position-aware version of common

primitives such as map.

Figure 1g shows the remaining types of kind ‘type’: func-
tion types, dependent function types, and we consider all data

types to be part of this kind as well. The kinding structure

presented here, particularly the separation of data and func-

tion types, ensures that we cannot represent functions as

data that we need to store in memory – something that is

not easily supported on GPUs.

Dependent Function Types. These function types of the

form (𝑛 : nat) → 𝑇 are parameterized with a nat parameter

that may appear in 𝑇 . This type allows polymorphism over

nat, in practice often used for programs that compute arrays

of dependent size.

Figure 2 shows typing rules for our type system. These

rules are standard, except that types in the typing environ-
ment Γ must be well-kinded in the kinding environment Δ
following the rules in Figure 1, and for the Conv rule, which

Generating High Performance Code for Irregular Data Structures using Dependent Types FHPNC ’21, August 22, 2021, Virtual, Republic of Korea

𝜅 ::= nat | nat→nat | nat→data | data | type

(a) Kinds

𝑥 : 𝜅 ∈ Δ

Δ ⊢ 𝑥 : 𝜅

(b) Kinding Structural Rules

|= ∀𝜎 : 𝑑𝑜𝑚(Δ) → N.𝜎 (𝑁) = 𝜎 (𝑀)
Δ ⊢ 𝑁 ≡ 𝑀 : nat
(c) Type Equality

Δ ⊢ ℓ : nat

⊕ ∈ (+, ∗, . . .)
Δ ⊢ 𝑁 : nat Δ ⊢ 𝑀 : nat

Δ ⊢ 𝑁 ⊕ 𝑀 : nat

Δ ⊢ 𝑁 : nat
Δ ⊢ 𝐹𝑁 : nat→nat

Δ ⊢ 𝐹𝑁 𝑁 : nat

(d) Natural Numbers

Δ, 𝑛 : nat ⊢ 𝑁 : nat

Δ ⊢ 𝑛 ↦→ 𝑁 : nat→nat

Δ, 𝑛 : nat ⊢ 𝑇 : data

Δ ⊢ 𝑛 ↦→ 𝑇 : nat→data

(e) Type-level Functions

Δ ⊢ f32 : data
Prim

Δ ⊢ 𝑁 : nat

Δ ⊢ idx[𝑁] : data
Index

Δ ⊢ 𝑁 : nat Δ ⊢ 𝑇 : data

Δ ⊢ 𝑁•𝑇 : data
Array

Δ ⊢ 𝑆 : data Δ ⊢ 𝑇 : data

Δ ⊢ 𝑆 ×𝑇 : data
Pair

Δ ⊢ 𝐹𝑇 : nat→data Δ ⊢ 𝑁 : nat

Δ ⊢ 𝐹𝑇 𝑁 : data
NatToDataApp

Δ ⊢ 𝑁 : nat Δ ⊢ 𝐹𝑇 : nat→data

Δ ⊢ 𝑁••𝐹𝑇 : data
PosDepArray

(f) Data Types

Δ ⊢ 𝜃1 : type Δ ⊢ 𝜃2 : type
Δ ⊢ 𝜃1 → 𝜃2 : type

Fun

Δ, 𝑥 : 𝜅 ⊢ 𝜃 : type 𝜅 ∈ (nat, data, nat→data)
Δ ⊢ (𝑥 :𝜅) → 𝜃 : type

DepFun

Δ ⊢ 𝜃 : data

Δ ⊢ 𝜃 : type
Data

(g) Types

Figure 1. Well-formedness of Types

𝑥 : 𝜃 ∈ Γ

Δ | Γ ⊢ 𝑥 : 𝜃
Var

Δ | Γ ⊢ 𝑃 : 𝜃1 Δ ⊢ 𝜃1 ≡ 𝜃2 : type

Δ | Γ ⊢ 𝑃 : 𝜃2
Conv

prim : 𝜃 ∈ Primitives

Δ | Γ ⊢ prim : 𝜃
Prim

(a) Structural Rules

Δ | Γ, 𝑥 : 𝜃1 ⊢ 𝑃 : 𝜃2

Δ | Γ ⊢ 𝜆𝑥.𝑃 : 𝜃1 → 𝜃2
Lam

Δ | Γ1 ⊢ 𝑃 : 𝜃1 → 𝜃2 Δ | Γ2 ⊢ 𝑄 : 𝜃1

Δ | Γ1, Γ2 ⊢ 𝑃 𝑄 : 𝜃2
App

Δ, 𝑥 : 𝜅 | Γ ⊢ 𝑃 : 𝜃 𝑥 ∉ 𝑓 𝑣 (Γ)
Δ | Γ ⊢ Λ𝑥 .𝑃 : (𝑥 :𝜅) → 𝜃

TLam

Δ | Γ ⊢ 𝑃 : (𝑥 :𝜅) → 𝜃 Δ ⊢ 𝜏 : 𝜅

Δ | Γ ⊢ 𝑃 𝜏 : 𝜃 [𝜏/𝑥]
TApp

(b) Abstraction and Application Rules

Figure 2. Typing Rules

map: (𝑛 : nat) → (𝑡1 : data) → (𝑡2 : data) → (𝑡1 → 𝑡2) → 𝑛•𝑡1 → 𝑛•𝑡2
map: (𝑛 : nat) → (ft1 : nat→data) → (ft2 : nat→data) → ((𝑖 : nat) → ft1 (𝑖) → ft2 (𝑖)) → 𝑛••ft1 → 𝑛••ft2

fold: (𝑛 : nat) → (𝑡1 : data) → (𝑡2 : data) → (𝑡1 → 𝑡2 → 𝑡1) → 𝑡1 → 𝑛•𝑡2 → 𝑡1

zip: (𝑛 : nat) → (𝑡1 : data) → (𝑡2 : data) → 𝑛•𝑡1 → 𝑛•𝑡2 → 𝑛•𝑡1 × 𝑡2

split: (𝑛 : nat) → (𝑚 : nat) → (𝑡 : data) → 𝑛𝑚•𝑡 → 𝑛•𝑚•𝑡
split: (𝑛 : nat) → (ft : nat→nat) → (𝑡 : data) → ∑𝑛

𝑖=0 ft (𝑖)•𝑡 → 𝑛••𝑖 ↦→ ft (𝑖)•𝑡
join: (𝑛 : nat) → (𝑚 : nat) → (𝑡 : data) → 𝑛•𝑚•𝑡 → 𝑛𝑚•𝑡
join: (𝑛 : nat) → (ft : nat→nat) → (𝑡 : data) → 𝑛••𝑖 ↦→ ft (𝑖)•𝑡 →

∑𝑛
𝑖=0 ft (𝑖)•𝑡

transpose: (𝑛 : nat) → (𝑚 : nat) → (𝑇 : data) → 𝑛•𝑚•𝑇 →𝑚•𝑛•𝑇
asDepArray: (𝑛 : nat) → (𝑡 : data) → 𝑛•𝑡 → 𝑛••𝑖 ↦→ 𝑡

liftNat: int → (𝑇 : data) → ((𝑛 : nat) → 𝑇) → 𝑇

which: (𝑛 : nat) → (𝑚 : nat) → 𝑛•bool →𝑚•idx[𝑛]

Figure 3. Common data-parallel primitives. Type variables in curly braces are implicit and inferred during type inference.

FHPNC ’21, August 22, 2021, Virtual, Republic of Korea Federico Pizzuti, Michel Steuwer, and Christophe Dubach

1 0 0
0 0

000

2
3 4

5

Dense Matrix
Compressed
Sparse Row

0 2 4 5 Offsets

1 2 3 4 5 Non-zero

0 2 1 2 2 Indices

Figure 4.Visual representation of conversion between dense
and sparse matrix formats

applies the type equality established in Figure 1c during type

checking.

2.2 Data Parallel Primitives
Figure 3 shows some of the data-parallel primitives sup-

ported in our language, which are quite common in array

programming languages. The map primitives exists in two

forms. One applies a function to each element of an ordi-

nary array, the other applies a dependent function to each

element of a position-dependent array. fold reduces an ar-

ray to a single value, by pairwise combination starting on

the left. split and join introduce and remove an additional

dimension to an array, and are also supported for position

dependent arrays. asDepArrayinterprets an ordinary array as

a position dependent array. The liftNat primitive is used

to scope an int, lifting it as a type level nat. Finally, which,
returns the indices of the firstm true elements in an array of

bool, defaulting to index 0 if m exceeds the input’s length.

3 Language Extensions
3.1 Limitations
Prior work[14] has demonstrated how to express irregular

data structures, as shown in the following code, implement-

ing triangular matrix-vector multiplication. The matrix is en-

coded as a position dependent array with type𝑛••𝑖 ↦→ 𝑖+𝑖•f32.
n indicates the number of rows in the matrix; 𝑖 + 1 expresses

the triangular shape. The index 𝑖 ranges from 0 up to 𝑛, so

the first row has one element, the second row has two, etc.

1 TmVM (n:nat) => (matrix:n..i->i+1. f32) =>

2 (vector:n.f32) = matrix

3 |> map(idx => row =>

4 let v = take (idx+1) vector

5 zip(row , v) |> map(*) |> fold (0, +))

However, it is not clear how to express programs operating

over sparse data structures. For example, consider the conver-

sion between dense matrices and sparse matrices, expressed

in the CSR format, focusing on the type signature of each

operation. Figure 4 illustrates the formats and conversion.

We start by transforming a sparse matrix to a dense one.
How can the operation’s type be expressed?

Each component of the CSR matrix could be modeled as a

separate parameter: the row offsets as an array of int, and
the data and column indices as an array of pairs. However,

it is impossible to write out the second array’s inner size:

𝜅 ::= . . . | nats |

nats→data | nats→nat

(a) Extension to Figure 1a

Δ ⊢ 𝑁𝑠 : nats Δ ⊢ 𝑁 : nat

Δ ⊢ 𝑁𝑠@𝑁 : nat

(b) Extension to Figure 1d

Figure 5. Extensions to Figure 1

csr2dense: (𝑛 : nat) → (𝑚 : 𝑛𝑎𝑡) → 𝑛.𝑖𝑛𝑡 →
(𝑛•?•f32 × idx[𝑚]) → 𝑛•𝑚•f32

As the inner dimension ? varies across rows, a regular

array is not sufficient. Instead, a position dependent array is

necessary. We introduce some unknown nat→nat function
𝑓 mapping the index of each row to its length:

csr2dense: (𝑛 : nat) → (𝑚 : nat) → 𝑛•int →
(𝑛•• (𝑖 ↦→ 𝑓 (𝑖)• (f32 × idx[𝑚]))) → 𝑛•𝑚•f32

What should 𝑓 be? From the definition of CSR, 𝑓 (𝑖) should
be the 𝑖th row length, computed from the offsets array. But

how can this operation be modeled at the type level?

3.2 Nats
The crucial observation is that, while an int can be expressed

at the type level as nat, there is no such equivalent con-

struct for an array of int, which is being used in the running

example to store the CSR row offsets.

Figure 5a introduces the new kind nats, representing a

type-level array of nat, together with an indexing operation.

We also extend the language with various supporting con-

structs: dependent functions (𝑛𝑠 : nats) → 𝜃 , type-level

functions nat→data and nats→nat, and lifting from an ar-

ray of int via the liftNats primitive:

liftNats:

(𝑛 : 𝑛𝑎𝑡) → {𝑇 : data} → 𝑛•int → ((𝑚 : nats) → 𝑇) → 𝑇

The type of csr2dense can now be expressed. The 𝑛𝑠@(𝑖 +
1) − 𝑛𝑠@𝑖 formula in the inner array models the csr format:

the length of each sparse row is given by subtracting the

start and end offset, as provided in the metadata array.

csr2dense: (𝑛 : nat) → (𝑚 : nat) → (𝑛𝑠 : nats) →
𝑛•• (𝑖 ↦→ (𝑛𝑠@(𝑖 + 1) − 𝑛𝑠@𝑖)• (f32 × idx[𝑚])) → 𝑛•𝑚•f32

Let us now try to write the type of the inverse transforma-

tion, dense2csr. The goal is thus to produce a sparse matrix

by attempting to return a pair containing both the sparse

matrix’s row offsets and non zero elements:

dense2csr: (𝑛 : nat) → (𝑚 : nat) → 𝑛•𝑚•f32 →
(nats, 𝑛•• (𝑖 ↦→ (?@(𝑖 + 1) − ?@𝑖)• (f32 × idx[𝑚])))

Once again, we run into type system limitations. Intu-

itively ? should refer to the nats stored in the first element

of the pair, but we have no way to express this dependence.

The previous example uses a dependent function to express

the dependency within components. But this is only possible

when taking inputs, not when producing outputs.

Generating High Performance Code for Irregular Data Structures using Dependent Types FHPNC ’21, August 22, 2021, Virtual, Republic of Korea

Δ, 𝑛 : 𝜅 ⊢ 𝑇 : data 𝜅 ∈ {nat, nats}
Δ ⊢ (𝑛 : 𝜅 ∗∗ 𝑇) : data

Figure 6. Dependent Pair Type

We can address the issue by extending the language with

dependent functions’s dual construct: the dependent pair

3.3 Dependent Pair Type
A dependent pair is a pair wherein the second element’s type

may depend on the first element’s value. Figure 6 shows the

relevant type formation rules. The language only supports

nat and nats dependent pairs. This limitation guarantees the

efficient implementation of dependent pairs.

Dependent pairs are used to express data structures tagged

with their size at runtime. For example, the dependent pair

(𝑛 : nat ∗∗ 𝑛•f32) models an array together with its length,

potentially dynamically computed at runtime.

We can now express the type of dense2csr by using the

dependent pair to refer to the matrix’s row offsets ns:
dense2csr: (𝑛 : nat) → (𝑚 : nat) → 𝑛•𝑚•f32 →

(𝑛𝑠 : nats ∗∗ 𝑛•• (𝑖 ↦→ (𝑛𝑠@(𝑖 + 1) − 𝑛𝑠@𝑖)• (f32 × idx[𝑚])))

3.4 Primitives Operating with Dependent Pairs
Adding dependent pairs also requires the introduction of new

primitives for their construction, destruction, and transfor-

mation. We give a brief description of each addition.

makeDepPair. This primitive serves as the constructor

for dependent pairs. It, like most of the newly introduced

primitives, comes in two version: makeNatDepPair for build-

ing nat-dependent pairs, and a makeNatsDepPair for building
nats-dependent pairs.
makeNatDepPair: (𝑓 : nat→data) → (𝑛 : nat) →

𝑓 (𝑛) → (𝑘 : nat ∗∗ 𝑓 (𝑘))
makeNatsDepPair: (𝑓 : nats→data) → (𝑛𝑠 : nats) →

𝑓 (𝑛𝑠) → (𝑘𝑠 : nats ∗∗ 𝑓 (𝑘𝑠))

As the two versions are identical save for the nat/nats
distinction, we refer to the first one only for brevity in the

following discussion.

makeNatDepPair’s first argument 𝑓 : nat→data is a type-
level function that, given any nat, produces a data type, po-
tentially dependent on the given nat. 𝑓 is applied to the sec-

ond argument 𝑛 : nat , yielding the type of third argument

𝑓 (𝑛): an instance of the data type generated by 𝑓 . The return

type is the constructed dependent pair (𝑘 : nat ∗∗ 𝑓 (𝑘)).
The newly bound 𝑘 has the same value as 𝑛, and the sec-

ond element 𝑓 (𝑘) has the same value as 𝑓 (𝑛). Crucially, this
rebinding ensures that the returned value no longer men-

tions an external 𝑛: the dependence is entirely hidden and

contained within the dependent dependent pair.

matchDepPair. matchNatDepPair serves as a projection

for dependent pairs, granting access to the elements. It also

comes in both a nat and a nats version. Just as before, for
conciseness, we only examine the first version.

matchNatDepPair: (𝑓 : nat→data) → (𝑇 : data) →
(𝑛 : nat ∗∗ 𝑓 (𝑛)) → ((𝑘 : nat) → 𝑓 (𝑘) → 𝑇) → 𝑇

matchNatsDepPair: (𝑓 : nats→data) → (𝑇 : data) →
(𝑛𝑠 : nats ∗∗ 𝑓 (𝑛𝑠)) → ((𝑘𝑠 : nats) → 𝑓 (𝑘𝑠) → 𝑇) → 𝑇

matchNatDepPair’s first argument is again the type level

function 𝑓 : nat→data, followed by the data type 𝑇 . The

third parameter, ((𝑘 : nat) → 𝑓 (𝑘) → 𝑇), is a function

computing a value of type𝑇 from the individual components

of the dependent pair. This function therefore implements

the body of the match. The behavior of matchNatDepPair is

to deconstruct the pair, pass the elements individually to 𝑓 ,

and return its result.

There is no risk of the matching function leaking the

dependent element: since the type 𝑇 is defined outside 𝑘’s

scope, 𝑇 is guaranteed to not depend on 𝑘 . The only way to

propagate a result dependent on 𝑘 is therefore to construct

a new dependent pair within the matching function.

reduceToNat. Using makeNatDepPair and matchNatDepPair
, it is possible to express arbitrary transformations of a depen-
dent pair’s second element. However, it is not clear how one

can transform the first element. Replacing the first element

with a different value requires a corresponding change in

the second element’s type to preserve the dependence.

Deriving a general solution to this challenge is beyond the

scope of this paper. We are however interested in providing

some support for such transformations. In particular, there

are cases in which the dependence on a nats can actually be

reduced into dependence to a nat.
reduceToNat: {𝑓 : nats→nat} → {𝑇 : data} →

(𝑛𝑠 : nats ∗∗ 𝑓 (𝑛𝑠)•𝑇) → (𝑘 : nat ∗∗ 𝑘•𝑇)

The primitive evaluates the function 𝑓 (𝑛𝑠) and binds it to

𝑘 , the first element of a new dependent pair. In the second

element, 𝑓 (𝑛𝑠) is then substituted with 𝑘 . The intuition here

is that the dependence is “too broad”, and only a single nat,
the value of 𝑓 (𝑛𝑠), is sufficient as the second array’s size.

This transformation is desirable if possible, because the

resulting nat-dependent pair is potentially much smaller

than the nats-dependent one. Note that the second element

changes only in type but not in value. We will further discuss

the utility of this primitive in sections 4.3 and 6.3.

4 Case Studies
This section presents three case studies to better motivate

and illustrate the contributions of this work. Each case il-

lustrates a potential use of dependent typing for expressing

programs operating with irregular data structures. The three

FHPNC ’21, August 22, 2021, Virtual, Republic of Korea Federico Pizzuti, Michel Steuwer, and Christophe Dubach

case studies analyzed are: dense matrix to CSR matrix con-
version, sparse matrix vector multiplication and breadth first
search’s parallel frontier expansion.

4.1 Dense to CSR Matrix Conversion
4.1.1 Overview. Dense matrices are commonly used in

the context of linear algebra and graph applications. They

are traditionally implemented as a contiguous array of values,

interpreted by the applications as a logical multi-dimensional

grid. In many applications, however, a large proportion of

the entries of a matrix are zero-valued. In these cases, the

use of a sparse matrix format drastically reduces the storage

needs, the number of operations performed, and thus leading

to more efficient and better-performing implementations.

Sparse matrices are commonly implemented by using both

a flat array storing the non-zero elements and additional

metadata — often arrays of indices, offsets, lengths, etc —

encoding the logical structure of the matrix. Most linear

algebra packages include conversions between dense and
sparse matrix formats.

4.1.2 Parallel Implementation. In Section 3.2, we have

discussed a possible type signature for a dense2csr: a func-

tion converting a dense matrix into a sparse one. The gener-

ated sparse matrix has the type:

type csr[n,m] =

(offs : nats ∗∗ 𝑛• (𝑖 ↦→ (offs@(𝑖 + 1) − offs@𝑖)• (f32 × idx[𝑚])))

Let us discuss a parallel GPU implementation of dense2csr.

Internally, dense2csr is split in two GPU kernels. The first

calculates the array of row offsets, and then the second per-

forms the compression of the matrix into the CSR format.

computeOffsets: (𝑛 : nat) → (𝑚 : nat) →
𝑛•𝑚•f32 → (𝑛 + 1)•f32

compressMatrix: (𝑛 : nat) → (𝑚 : nat) →
𝑛•𝑚•f32 → (𝑛 + 1)•f32 → 𝑐𝑠𝑟 [𝑛,𝑚]

computeOffsets is implemented as a parallel scan over the

number of non-zero elements in each row. While there are

several well-known low-level implementations of parallel

scan on a GPU[7], giving an efficient functional-style formu-

lation is outside the scope and topic of this paper. We instead

focus on the second step, compressMatrix, which makes use

of the primitives and type extensions introduce here and

constitutes the core of this first case study.

Listing 1 shows the relevant code. The implementation

assumes the dense matrix to be in the column-major format,

as this is the formulation used by reference state-of-the-art

libraries like cuSparse. The program can be adapted to row-

major by simply removing the transpose call at line 4 and

then adjusting the input type accordingly.

The program begins by lifting the array offsets to the type

level (line 3). Lines 6 compresses each row in the matrix: the

number of non-zero values is calculated from the offs array

1 def compressMatrix (n:nat) => (m:nat) =>

2 (offsets:n+1. nat) => (dense:m.n.f32) =>

3 liftNats(offsets)((offs: nats) =>

4 dense |> transpose

5 |> asDepArray

6 |> map(i => r => compressRow(offs ,i,r))

7 makeNatsDepPair(offs)(sparse)

8

9 def compressRow offs rowIdx row =

10 let length = offs@(rowIdx +1)-offs@rowIdx

11 row |> map(x => x != 0.0)

12 |> which(length)

13 |> map(idx => (row@idx ,idx))

Listing 1. Implementation of the compression phase of

dense2csr

at line 10, and thewhich primitive is used to find their indices

at lines 11-12. Line 13 extracts the sparse row, consisting of

the non-zero value and its column index.

The resulting array, now dependent on offs, and thus a

dependent pair is used to combine the two values (line 7),

encapsulating the dependence.

While this expressionmay look complex, it is implemented

by generating efficient code, as demonstrated later in 5.4

4.2 CSR Sparse Matrix Vector Multiplication
The previous case study has shown how to express the gen-

eration of a sparse data structure. Conversely, this case study

depicts the consumption of a sparse data structure, by imple-

menting the classic linear algebra algorithm parallel sparse
matrix-vector multiplication (SpMV).

Our choice of type representation for the CSR matrix is

identical to that used in the dense2csr case study. The whole

sparse matrix vector operation therefore has type:

csrSpMV1:

(𝑛 : nat) → (𝑚 : nat) → 𝑐𝑠𝑟 [𝑛,𝑚] →𝑚•f32 → 𝑛•f32

There is, however an alternative formulation, which does

not use dependent pairs (as a reminder, csr is a type alias for
a dependent pair). In this second version, the sparse matrix

is expressed via two separate parameters, one for the row

offsets, the other for the array of non-zero values and column

indices. This representation is similar to that used in prior

work [15] and in the csr2dense example covered in 3.1.

csrSpMV2: (𝑛 : nat) → (𝑚 : nat) → (offs : nats) →
(𝑛•𝑖 ↦→ (offs@(𝑖 + 1) − offs@𝑖)• (f32 × idx[𝑚])) →
𝑚•f32 → 𝑛•f32

Implementation. The two implementations are remark-

ably similar – SpMV1 can be straightforwardly implemented

in terms of SpMV2
The source code for the core of the algorithm is given in

listing 2, and is similar to common implementations of dense
matrix vector multiplication: the matrix’s rows are processed

Generating High Performance Code for Irregular Data Structures using Dependent Types FHPNC ’21, August 22, 2021, Virtual, Republic of Korea

1 def csrSpMV1 (n:nat) => (m:nat) =>

2 (matrix: csr[n,m]) => (vector: m.f32) =

3 matchNatsDepPair(matrix)(offs => data =>

4 csrSpMV2(n,m,offs ,data ,vector))

5

6 def csrSpMV2 (n:nat) => (m:nat) =>

7 (offs:nats) =>

8 (nnz:n..i->(offs@(i+1))-offs@i .(f32×idx[m]))=>
9 (vector:m.f32) =

10 nnz |> map(row => dotProduct(row ,vector))

11

12 def dotProduct row vector =

13 row |> map (i => x => x*vector@i)

14 |> fold(0, +)

Listing 2. Implementations of sparse matrix vector

multiplication (SpMV). Version 1 models the matrix with

a dependent pair while version 2 uses multiple arguments

in parallel using the map primitive (line 10). For each row

then, the dot product is implemented by a map and then a

fold over pairs of matrix and vector elements (lines 13-14).

The advantage of using dependent pairs is the ability to

express the whole sparse matrix as a single value, rather then

splitting it across a number of parameters. There are also

low-level differences concerning data representation that

may have a measurable performance impact. A dependent
pair is stored in memory as a single, contiguous buffer, while

the two separate parameters make no specification on their

relative position. These differences and the conditions under

which a dependent pair need to be stored in memory are

discussed in detail in section 5.1. The magnitude of these

effects is presented in section 6.2

4.3 Breadth-First Search Frontier Expansion
Breadth-first search is a fundamental graph algorithm, with

several well known parallel implementations in the context

of General Purpose GPU programming. As a graph algorithm,

BFS operates over inherently irregular data structures, while

also being both relatively simple and well known.

Our implementation is a version of parallel breadth-first
search [12]. It makes use of a frontier: an array containing

the nodes to be explored next. At each iteration, the frontier
expansion is computed, replacing each node with its children

nodes. A second data structure tracks which nodes have been

already seen. These are discarded from the next frontier.

Implementations may include other application-specific

processing, such as recording the path traversed to a node,

or updating a distance metric, etc. For simplicity, we omit

these additional steps.

Figure 7 illustrates the graph representation used through-

out the case study. A graph is modeled similarly to a sparse

matrix: an array of offsets specifies for each node a slice

in a second array, containing the edges of that node. The

edges are then represented by storing the index of the child

0

1 3

42

Graph Topology Representation

1 2 3 1 4 4
EdgesNodes

0 2 3 5 6 6

Figure 7. Graph representation used for the BFS algorithm

implementation

node. The two-dimensional structure of the edges array is

expressed with a position dependent array, stored together

with the nodes within a dependent pair :
type graph[n] =

(nodes : nats ∗∗ 𝑛•• (𝑖 ↦→ (nodes@(𝑖 + 1)− nodes@𝑖)•idx [𝑛]))

4.3.1 Parallel Implementation. We consider a parallel

implementation of the BFS algorithm for GPUs, focusing

solely on the computation of the next frontier, as it is a small

use case sufficient for our purposes.

This is a GPU-oriented implementation subject to the

considerations mentioned in 4.1.2. At its core, the frontier

expansion phase copies a subset of each node’s children from

the input frontier to the output. Since the number of children

extracted from each node is not statically known, issues arise

on how to perform all these writes in parallel into the same

buffer without causing data races.

A pessimistic naive solution is to write, for a graph of

knownmax degree𝑑 , each 𝑖th node children starting at offset

𝑑 ∗𝑖 , leaving gaps in the output buffer. This solution is highly

inefficient, as the max degree 𝑑 can be very high. This is

particularly true on the very commonly encountered power-

law graphs, where a few nodes have an exceedingly high

degree, but most nodes a very low one. The large memory

consumption renders the approach completely impractical

for even moderately sized graphs.

A better solution is to split the calculation in two steps.

The first step, count, computes for each node in the previous

iteration frontier, the number of children not yet seen. Rather

than just returning these lengths, count produces their prefix

sum, to compute each frontier’s writeOffsets.
count: (𝑛 : nat) → graph[𝑛] → (𝑛.bool) →

(𝑚 : nat) →𝑚•𝑖𝑑𝑥 [𝑛] →𝑚 + 1•int

The second step, computeFrontier, iterates again over the

input frontier, extracts the unseen children, and then writes

them out to the output frontier, using the writeOffsets to
determine each node’s output slice in parallel. The slices are

contiguous in the output buffers, while avoiding data races.

computeFrontier: (𝑛 : nat) → graph[𝑛] → (𝑛•bool) →
(𝑚 : nat) →𝑚•𝑖𝑑𝑥 [𝑛] →
(𝑚 + 1)•int → (𝑘 : nat ∗∗ 𝑘•𝑖𝑑𝑥 [𝑛])

Just as before, we omit the parallel scan implementation

and focus on the implementation of computeFrontier, whose

FHPNC ’21, August 22, 2021, Virtual, Republic of Korea Federico Pizzuti, Michel Steuwer, and Christophe Dubach

1 def computeFrontier (n:nat)=>(gs: graph[n])=>

2 (frontier: m:nat ** m.idx[n])=>

3 (writeOffsets :(m+1).int) => (seen:n.bool) =

4 liftNats(writeOffsets)(writeOffsets =>

5 matchNatsDepPair(gs)(

6 nodes => edges =>

7 matchNatDepPair frontier (

8 fLen => fElems =>

9 let nextFrontier =

10 fElems

11 |> asDepArray

12 |> map(i => nodeId =>

13 let expected = (writeOffsets@(i+1)-

writeOffsets@i)

14 let children = edges @ nodeId

15 filterSeen(seen ,expected ,children)

16 |> join

17 makeNatsDepPair(writeOffsets)(nextFrontier)

18 |> reduceToNat))))

19

20 def filterSeen seen expected nodes =

21 nodes |> map(node => !(seen@node))

22 |> which (expected)

23 |> map(i => nodes @ i)

Listing 3. Implementation of the next frontier computation

step of parallel breadth first search

code is presented in listing 3. Lines 4 to 7 access the graph

and frontier, and lifting the writeOffsets to the type level.

We then map over each frontier node (line 12), and ex-

tracting the unseen children (line 15). At this point, the in-

termediate next frontier result as type:

fLen• (𝑖 ↦→ (writeOffsets(𝑖 + 1) − writeOffsets@𝑖)•idx[n])

We now flatten this two dimensional structure by applying

the join primitive (line 16), resulting in a single-dimensional

array of type:

(∑fLen−1
𝑖=0

(writeOffsets@(𝑖 + 1) − writeOffsets@𝑖))•idx[𝑛]

Using the reduceToNat at line 18, the summation is evalu-

ated and the result bound to the fresh variable 𝑘 , therefore

discarding the cumbersome dependence on writeOffsets.
before: (writeOffsets : nats ∗∗

(∑fLen−1
𝑖=0

(writeOffsets@(𝑖 + 1) − writeOffsets@𝑖))•idx[𝑛])

after: (𝑘 : nat ∗∗ 𝑘•idx[𝑛])

This transformation may seem potentially expensive, as it

involves computing the value of the summation. In practice,

the compiler can optimized it away by inferring that the

value of k is simply given by writeOffsets @ (fLen + 1) — ulti-

mately implemented as an array lookup. The optimization

relies on the symbolic algebra system included in the com-

piler. Further details of this optimization process are given

in the reduceToNat paragraph of section 5.2

5 Compiler Implementation
In this section, we look at some implementation details and

techniques used in the compiler to provide support to the

language extensions proposed in section 3. We will then

illustrate an example of code generation by stepping through

the compilation of a simple example program.

5.1 Dependent Pair Representation
In the generated low-level code, dependent pairs are repre-
sented in a number of ways. There are two main representa-

tions: a materialized and a non-materialized representation.

The materialized representation is used when a dependent

pair crosses a GPU kernel boundary. It consists of storing

the dependent pair components contiguously in a memory

buffer, which can then be referred via a single handle. Being

self-contained, it optimizes for simplicity of transport.

The non-materialized representation is used for depen-

dent pairs that are defined within a GPU kernel and are not

part of the output. It is the preferred representation unless

materialization is needed. It consists of having two indepen-

dent buffers for each element of the dependent pair. This

allows the lazy construction and access of intermediate de-

pendent pairs, eliminates unnecessary memory allocations

and copies, and allows for the fusion of other lazy operations

accessing the dependent pair contents. The tracking of sepa-

rate buffers is entirely static, and therefore this is a zero-cost

representation, optimizing for execution performance.

5.2 Primitives Implementation
As detailed in section 3, we extend the base language with

several primitives. The previous sections have covered these

primitive’s type signature and semantics. We now cover the

new primitive’s low-level implementation.

mkDPair. This primitive constructs a dependent pair de-

pendent from individual components.

If the generated pair is part of the program’s output, it

will have to be materialised. In this case, mkDPair requests
for a sufficiently large buffer to be allocated (see section 5.3

for a discussion of memory allocation on GPGPU targets),

copying the components in parallel.

Alternatively, if the resulting pair does not appear in the

program’s output, then the lazy non-materialised represen-

tation is used. In this case, no code is generated for the

primitive.

dmatch. This primitive deconstructs a dependent pair,

giving access to each element individually. If the argument is

materialized, the compiler generates the two element point-

ers from the backing dependent pair buffer, and passes them

to the matching function. If the pair is not-materialized, then
the call is optimized away, the individual element pointers

are already available for use.

Generating High Performance Code for Irregular Data Structures using Dependent Types FHPNC ’21, August 22, 2021, Virtual, Republic of Korea

reduceToNat. This primitive allows shrinking a nats de-
pendent pair to a nat dependent pair, in cases where the sec-

ond component depends only on some reduction of the first.

If possible, the generated dependent pair is non-materialized.
The uniqueness of this primitive lies in the fact that it

does not express a value-level computation, but rather a

type-level one — namely the evaluation of a 𝑓 : nats→data
function into a single nat. This is performed by simplifying

the function 𝑓 using the compiler symbolic algebra engine

and then generating the target code implementing any re-

maining computation.

To show the full power of the system, we walk through

an example from section 4.3. A dependent pair with type:

(𝑛𝑠 : nat ∗∗ ∑𝑛−1
𝑖=0 (𝑛𝑠@(𝑖 + 1) − 𝑛𝑠@𝑖)•𝑛𝑜𝑑𝑒)

is passed to reduceToNat. The dependent pair is not materi-

alized, and is stored in two separate buffers, of type (using C

notation) int ∗ fst and node ∗ snd.
The symbolic algebra engine simplifies the summation in

the second element’s type into an efficient closed form, by

using the algebraic rule:

𝑁∑
𝑖=0

(𝑓 (𝑖 + 𝑐) − 𝑓 (𝑖)) = 𝑓 (𝑁 + 𝑐) − 𝑓 (0) (1)

Using the rule, the array size is simplified to 𝑛𝑠@𝑛−𝑛𝑠@0.

The compiler generates the equivalent CCode fst[n] − fst[0].
A second optimization, whose details are omitted here, de-

termines that fst[0] = 0, eliminating the subtraction.

Ultimately, the call reduceToNat is entire a type level oper-
ation and is thus optimized away: as the resulting dependent

pair is non-materialized, accesses to the first element are

redirected to fst[n], and accesses to the second element to

node ∗ snd: the original second element buffer.

5.3 Memory Allocation
GPGPU programming platforms offer limited support for dy-

namic memory allocation. The programming model requires

that memory allocation is performed ahead of kernel launch.

This preserves a modicum of dynamicity: the host-side dri-

ver application, responsible for orchestrating the computa-

tion, has access to the kernel inputs and can inspect them

to compute appropriate memory buffer sizes. However, no

allocation can be performed during kernel execution.

The lack of dynamic memory allocation constitutes one

of the main implementation challenges: dependent pairs are

used to model data structures with dynamic size, but dynam-

ically allocating memory for the structure is not possible

within the execution of program.

The problem is addressed by using the language’s type

system, which tracks the length of arrays, the only type

with variable size, with nat symbolic expressions. The com-

piler uses the symbolic simplification engine to calculate

the upper bound of each expression, determining a minimal

conservative size for each memory buffer.

1 def example (n:nat) => (numChunks:nat) =>

2 (data:n.int) => (offsets :(n+1).int) =

3 liftNats(offsets)(offs =>

4 let filtered_data = data

5 |> split(n/numChunks)

6 |> asDepArray

7 |> map(i => chunk =>

8 chunk

9 |> map(x => x != 0)

10 |> which(offs @ (i+1) - offs @ i)

11 |> map (idx => chunk @ idx))

12

13 makeNatsDepPair(offs , filtered_data)

14) |> matchNatsDepPair(offs => data =>

15 makeNatsDepPair(offs , join data))

16 |> reduceToNat

Listing 4. High level source for listing 5

1 void example(int* output , int n, int numChunks ,

2 int* data , int* offs) {

3 parallel for (int chunkId = 0;

4 chunkId < num_chunks;

5 chunkId ++) {

6 int indices[offs[i+1] - offs[i]];

7 int idx_write = 0;

8 for(int i 0; i<offs[i+1]-offs[i]; i++) {

9 if (data[chunkId *(n/numChunks)+i] != 0) {

10 indices[idx_write] = i;

11 idx_write ++; }}

12 int* out = output + (1+ offs[i+1]-offs[i]);

13 for (int i = 0; i < idx_write; i++) {

14 out[i] = data[indices[i]];

15 }

16 output [0] = offs[n];

17 } }

Listing 5. Idealised parallel C code generated by compiling

listing 4

5.4 Low Level Code Generation
We now walk through an example showing how all the

features described so far are combined together into an ef-

ficient implementation. For simplicity, the target language

will be an idealized C with parallel loops.

The program is a simplified version of csr2dense, covered

in section 4.1.2. Given an array of integers data, it returns
an array of dynamic size containing the non-zero elements.

It employs a parallelization strategy similar to that used in

the case study: the input array is split in a number of chunks

processed in parallel, and we expect to be given an array of

the expected output offsets for each chunk, which is assumed

to be computed in some other kernel.

The source program is found in listing 4, the generated

code in listing 5. Listing 4:1-2 defines the kernel’s signa-

ture. We can see in listing 5 that the parameter arrays are

represented as flat buffers.

FHPNC ’21, August 22, 2021, Virtual, Republic of Korea Federico Pizzuti, Michel Steuwer, and Christophe Dubach

Listing 4:3 uses liftNats: in the scope of the supplied

function, the array offset is visible at the type level as off :

nats. This is a type-level operation and generates no C code.

In listing 4:5-6, the data array is the split in chunks and

transformed into a position dependent array. As all these
operations are lazy, no C code is generated.

In lines 7-11, the array is transformed by a position-aware
map. This operation corresponds to the parallel for loop

defined in listing 5:3-5. The iteration bound is derived from

the outer array dimension, which is stored in numChunks.
Listing 4:9-10 filter away the zeros from the chunk. This

generates listing 5:6-11. The computation’s overall shape

is derived from the which pattern, but the iteration bounds,

data accesses, and filtering predicate are derived from the

lazy split and map preceding it.

Listing 4:11 generates listing 5:12-15. This is the copy of

the filtered non zero values to the output buffer. Iteration

bounds and ranges are derived from type information.

Finally, listing 4:13-16 first construct a dependent pair

packing together the offsets and the two dimensional fil-

tered away. The pair is then matched apart, and flattened

via join, before being finally passed to reduceToNat. The op-

erations are heavily optimized, being compiled to a single

scalar assignment in listing 5:16.

Listing 4 uses a somewhat verbose style to showcase the

range of optimizations supported. The intermediate depen-

dent pair crated in in listing 4:13 is optimized away. The

split on line 15 ‘cancels out’ the effects of the split at line

5, and reduceToNat is optimized away into a simple lookup

as shown in section 5.2.

6 Evaluation
This section presents the results of several experiments, each

dedicated to evaluating one aspect of this paper’s case studies.

To show the competitiveness of our approach, we compare

our dense matrix to CSR conversion kernel with an equiva-

lent implementation provided by cuSparse, a highly tuned

library supplied by Nvidia.

We then compare the runtime of two CSR sparse matrix

vector product implementations, one using dependent pairs

to model its sparse matrix input, the other using the de-

structured representation previously used in [15].

Finally, we provide measurements for two implementa-

tions of BFS’s next frontier step: a naive parallel implementa-

tion, compared to a more optimized implementation, illus-

trating the process of deriving the former into the latter.

Experimental Setup. All experiments are performed us-

ing the compiler’s OpenCL CUDA backend, targeting version

1.2 of the standard, driver version 10.2.185. All experiments

are run on an NVidia GeForce GTX 1070. For comparison

purposes, we run kernels from the cuSparse library provided

by the CUDA 11 suite. Each run-time number shown is com-

puted from the median of 100 consecutive runs to measure

1x

1.25x

1.5x

1.75x

1024 2048 4096 8092

Dense Matrix Dimension

S
p

ee
d

u
p

 v
s

cu
S

p
ar

se

Matrix Density
6.25%
1.56%
0.39%
0.10%
0.05%
Mean

Figure 8. Relative performance of our implementation of

dense to sparse CSR matrix conversion vs cusparseSdense2csr.
Higher is better.

the GPU’s steady-state performance. All execution times

refer to GPU computation time only.

6.1 Dense to Sparse Conversion
The first experiment we present compares our parallel ver-

sion of dense to CSR matrix conversion with an equivalent

implementation provided by the cuSparse library, in the form

of the cusparseSdense2csr library call.

cusparseSdense2csr is internally implemented with a num-

ber of kernels, as reported by the CUDA profiler nvprof. A
single call to cusparseSdense2csr includes both the row off-

set computation step via parallel scan and the matrix con-

struction step yielding a full CSR matrix. All the numbers

presented include both the time of executing a prefix sum

generating the offsets for both our implementation and the

cusparseSdense2csr reference. Note that the row offset com-

putation step constitutes a very small fraction of the overall

application runtime — well under 1%.

Figure 8 shows the relative performance of our imple-

mentation taking cusparseSdense2csr as a baseline, across
a number of matrix sizes, and densities ranging from 6% to

0.03%. The matrix density refers to the proportion of non-

zero elements present in the dense matrix. The results show

that our implementation outperforms the reference for most

combinations of matrix density and size, with an average of

1.2× speedup across matrix sizes.

As we do not have access to cusparsSdense2csr’s imple-

mentation, it is not possible to further analyze the differences

between implementations. Previous work has shown that the

optimizations enabled by data-parallel functional GPU lan-

guages can be used to produce comparable or outperforming

implementations of state-of-the-art library versions [6, 15],

substantiating our claim the extending expressiveness of

Generating High Performance Code for Irregular Data Structures using Dependent Types FHPNC ’21, August 22, 2021, Virtual, Republic of Korea

0.5x

1x

2x

3x

4x

web
-G

oogle

web
-S

ta
nfo

rd

en
gin

e

GaA
sH

6

NACA00
01

5

Goodwin
_0

30

Goodwin
_1

27

Dubco
va

3

ra
ja

t3
0

gupta
2

to
rs

o1
SiO

2

pku
st

k2
1

m
ip

1

M
ea

n

S
p

ee
d

u
p

 v
s

cu
S

p
ar

se

With dependent pairs

Without dependent pairs

Figure 9. Performance of spmv exrpessed with dependent

pairs and without dependent pairs CSR matrix relative to

cusparseSpMV. Higher is better.

such languages, while carefully avoiding the introduction of

unnecessary overhead, proves to be a fruitful endeavor.

6.2 Sparse Matrix Vector Multiplication
The second experiment measures the performance of our

implementation of sparse matrix-vector multiplication, as

compared with cuSparse’s csrSpmV library implementation.

The code for our implementation is largely based on the case

study presented in section 4.2.

Moreover, the experiment is also used to measure the

runtime overhead of using dependent pairs for represent-

ing sparse data structures by comparing the performance

differences of the two versions of sparse matrix-vector multi-
plication presented in section 4.2. The first version accepts

a dependent pair as input and therefore uses the material-
ized representation, while the second version, taking two

separate arguments, one for each component, is equivalent

to employing a non-materialized representation.
Figure 9 shows the relative performance of the two ver-

sions, in relation to the cuSparse baseline, using as input a

selection of real-world sparse matrices commonly used in

the literature. The matrices are sourced from the Suite Sparse

Matrix Collection[4]. The cuSparse baseline is offered pri-

marily to highlight the general efficacy of our approach, and

to contextualize the impact of the performance loss incurred

by using dependent pairs to express entire data structures.

The result shows that dependent pair materialization in-

troduces a small overhead in most cases, but does not have a

significant effect on the overall performance of the SpMV im-

plementation, which remains competitive with cuSparse’s,

outperforming it by 1.2× on average vs 1.3× for the non-

materialized case.

Max Uncoalesced

Max Coalesced

0k

10k

20k

30k

40k

50k

0k 50k 100k 150k 200k

Nodes in Graph

T
h

ro
u

g
h

p
u

t
((

N
o

d
es

 +
 E

d
g

es
)/

m
s)

Naive Iteration 1
Naive Iteration 2
Optimized Iteration 1
Optimized Iteration 2

Figure 10. Throughput comparison for iteration 1 and 2 of

naive and optimized versions of the BFS kernel. Included

for reference are the GPU theoretical throughput limits for

coalesced and non-coalesced memory accesses.

6.3 Breadth First Search Frontier Expansion
The last experiment concerns the third case study, the fron-

tier expansion step of the Breadth-First Search. For this ex-

periment, we generate random power-law graphs using the

widely used Albert-Barabasi[1] model. Although the graphs

are random, the model ensures that starting from one of

the base-set’s nodes, it is overwhelmingly likely that three

iterations are sufficient to complete a full Breath First Search.

We only report results for the first two iterations: the third

iteration does very little work, as the graph is already almost

entirely explored at this point. The experiment compares two

implementations, termed naive and optimized, computing

the next iteration frontier. Both versions roughly follow the

description presented in section 4.3.

Naive Frontier Expansion. The naive adheres strictly to
the case study version and is not concerned with implement-

ing key GPU-specific optimizations. In particular, this im-

plementation fails to take advantage of memory coalescing,
an optimization that is fundamental to achieve high per-

formance on the target GPU. Memory coalescing requires

structuring the application data access patterns so that con-

secutive threads in a GPU warp access consecutive memory

addresses. As a result, the naive version does not make effi-

cient use of the GPU’s available memory bandwidth.

Optimized Frontier Expansion. The BFS expansion al-

gorithm can be modified to benefit from both memory coa-
lescing and increased parallelism levels. The first step of the

algorithm reads, for each node in the input frontier, all of

its children. The naive version assigns individual threads

to each node in the input frontier. This implies that all the

children of any given node are read sequentially. Moreover,

since consecutive threads read the children of different nodes,

FHPNC ’21, August 22, 2021, Virtual, Republic of Korea Federico Pizzuti, Michel Steuwer, and Christophe Dubach

their memory accesses are scattered throughout the graph

and cannot be reliably coalesced.

We improve on the naive implementation by writing a new

version, taking advantage of well-known GPU programming

techniques. We restructure the parallelism and memory ac-

cess patterns of the program, splitting it into two separate

executions: a read kernel and a filter kernel.
The read kernel’s copies all the children of the frontier’s

node in a new buffer. Delaying the filtering allows for a

straightforward access pattern. This simpler access pattern

assigns an entire warp (a block of 16 consecutive threads) to

each node, ensuring that reads are coalesced when possible

The filter kernel then performs the filtering of the already-

seen nodes. As filtering a node’s children is an inherently

sequential process, this second step assigns a thread to each

node, yields the next iteration’s frontier.

Figure 10 compares the two versions, showing the through-

put for the first and second iteration over several graphs. We

also include the GPU’s maximum theoretical throughput

when performing coalesced and non-coalesced reads to con-

textualize the results. As we can see, the naive is consistently
lower than the GPU’s max non-coalesced read bandwidth,

while the optimized version is always above the threshold.

7 Related Work
7.1 Data Parallel Functional Languages
Languages such as Futhark [8], Rise [5],Lift [18, 19], Acceler-
ate [11] and Single Assignment C [17] provide a high level

functional interface to GPU programming, greatly simplify-

ing the task while generating correct and high performance

code. They have extensive facilities for expressing programs

that operate over dense and regular data structures, primarily

modeled through multi dimensional arrays. These languages,

however, do not provide a holistic solution to the problem

of expressing irregular or sparse data structures.

7.2 Streaming Irregular Arrays
Streaming Irregular Arrays [3] are an extension to Acceler-
ate which enable reasoning and programming with nested

irregular arrays ergonomically and efficiently. They differ

from our solution in several ways. Firstly, streaming irregular
arrays uses data streams to model irregular data structures,

while our work emphasizes the use of random-access arrays.

Secondly, it provides language-level support to concepts spe-

cific to irregular data structures, such as shapes and sequence
computations. Conversely, our work attempts to build such

support from more general and orthogonal constructs such

as dependent functions and pairs.

7.3 Dependently Typed Languages
Dependently typed languages, such as Idris [2] or Agda [13]
or the earlier Epigram [10] possess powerful type systems,

allowing the user to express complex invariants and are fully

capable of modeling irregular data structures. This expres-

siveness is also an obstacle for efficient compilation. They

are therefore unsuitable for high performance and numeric

computing, and particularly GPGPU programming.

7.4 Domain Specific Compilers
An alternative trend to data parallel functional languages has
been the development of domain-specific compilers, target-

ing popular application areas such as Halide [16] for image

processing and TACO [9] for tensor algebra. These systems

often support sparse and irregular data structures as required

by each domain of interest. Their domain specific nature is

the main difference from our approach, which offers a flexi-

ble solution valid in many different domains.

8 Conclusion
This paper has shown that by extending a data-parallel func-

tional language with dependent typing facilities, it is possi-

ble to model irregular and sparse data structures, including

sparse matrices and graphs. We explored these additions via

three case studies implementing relevant parallel applica-

tions: dense to sparse matrix conversion, sparse matrix vector
multiplication and breadth first search frontier expansion.
We detailed some of the most relevant implementation

techniques necessary to implement the proposed extensions

efficiently in the context of a highly parallel hardware plat-

form, emphasizing memory allocation, the elimination of

intermediate copies and symbolic simplification.

We have evaluated the approach through three experi-

ments. We have demonstrated the general viability of the

technique by comparing our implementations of dense to
sparse matrix conversion and sparse matrix vector multipli-
cation with the equivalent functionality provided by the

highly optimized, state-of-the-art NVIDIA cuSparse library.

We have demonstrated that the approach is competitive, and

often outperforms cuSparse.

We have then analyzed the overhead of using some of the

proposed additions, highlighting the importance of many

of the optimizations internally provided by our compiler.

Finally, we have shown the optimization process for parallel

breadth first search, highlighting the importance of GPU

specific techniques.

Acknowledgments
This work was supported by the Engineering and Physi-

cal Sciences Research Council (grant EP/L01503X/1), EPSRC

Centre for Doctoral Training in Pervasive Parallelism at

the University of Edinburgh, School of Informatics. We also

acknowledge the support of the Natural Sciences and En-

gineering Research Council of Canada (NSERC) Discovery

Grants Program [grant RGPIN-2020-05889], and the Canada

CIFAR AI Chairs Program.

Generating High Performance Code for Irregular Data Structures using Dependent Types FHPNC ’21, August 22, 2021, Virtual, Republic of Korea

References
[1] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics

of complex networks. Reviews of modern physics 74, 1 (2002), 47.

https://doi.org/10.1103/RevModPhys.74.47
[2] Edwin C. Brady. 2021. Idris 2: Quantitative Type Theory in Practice.

In 35th European Conference on Object-Oriented Programming, ECOOP
2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs,
Vol. 194), Anders Møller and Manu Sridharan (Eds.). Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 9:1–9:26. https://doi.org/10.4230/
LIPIcs.ECOOP.2021.9

[3] Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty,

and Gabriele Keller. 2017. Streaming irregular arrays. In Proceedings
of the 10th ACM SIGPLAN International Symposium on Haskell, Oxford,
United Kingdom, September 7-8, 2017, Iavor S. Diatchki (Ed.). ACM,

174–185. https://doi.org/10.1145/3122955.3122971
[4] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse

matrix collection. ACM Transactions on Mathematical Software (TOMS)
38, 1 (2011), 1–25. https://doi.org/10.1145/2049662.2049663

[5] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying

Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving high-

performance the functional way: a functional pearl on expressing

high-performance optimizations as rewrite strategies. Proc. ACM Pro-
gram. Lang. 4, ICFP (2020), 92:1–92:29. https://doi.org/10.1145/3408974

[6] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,

and Christophe Dubach. 2018. High performance stencil code genera-

tion with Lift. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization. 100–112. https://doi.org/10.1145/
3168824

[7] Mark Harris, Shubhabrata Sengupta, and John D Owens. 2007. Parallel

prefix sum (scan) with CUDA. GPU gems 3, 39 (2007), 851–876.
[8] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Hen-

glein, and Cosmin E. Oancea. 2017. Futhark: purely functional GPU-

programming with nested parallelism and in-place array updates. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 556–571.

https://doi.org/10.1145/3062341.3062354
[9] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and

Saman P. Amarasinghe. 2017. The tensor algebra compiler. Proc. ACM
Program. Lang. 1, OOPSLA (2017), 77:1–77:29. https://doi.org/10.1145/
3133901

[10] Conor McBride. 2004. Epigram: Practical Programming with Depen-

dent Types. In Advanced Functional Programming, 5th International
School, AFP 2004, Tartu, Estonia, August 14-21, 2004, Revised Lectures
(Lecture Notes in Computer Science, Vol. 3622), Varmo Vene and Tarmo

Uustalu (Eds.). Springer, 130–170. https://doi.org/10.1007/11546382_3
[11] Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and

Ben Lippmeier. 2013. Optimising purely functional GPU programs. In

ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and

Tarmo Uustalu (Eds.). ACM, 49–60. https://doi.org/10.1145/2500365.
2500595

[12] Duane Merrill, Michael Garland, and Andrew S. Grimshaw. 2015. High-

Performance and Scalable GPU Graph Traversal. ACM Trans. Parallel
Comput. 1, 2 (2015), 14:1–14:30. https://doi.org/10.1145/2717511

[13] Ulf Norell. 2008. Dependently Typed Programming in Agda. In Ad-
vanced Functional Programming, 6th International School, AFP 2008,
Heijen, The Netherlands, May 2008, Revised Lectures (Lecture Notes
in Computer Science, Vol. 5832), Pieter W. M. Koopman, Rinus Plas-

meijer, and S. Doaitse Swierstra (Eds.). Springer, 230–266. https:
//doi.org/10.1007/978-3-642-04652-0_5

[14] Federico Pizzuti, Michel Steuwer, and Christophe Dubach. 2019.

Position-Dependent Arrays and Their Application for High Perfor-

mance Code Generation. In Proceedings of the 8th ACM SIGPLAN In-
ternational Workshop on Functional High-Performance and Numerical
Computing (Berlin, Germany) (FHPNC 2019). Association for Comput-

ing Machinery, New York, NY, USA, 14–26. https://doi.org/10.1145/
3331553.3342614

[15] Federico Pizzuti, Michel Steuwer, and Christophe Dubach. 2020. Gen-

erating fast sparse matrix vector multiplication from a high level

generic functional IR. In CC ’20: 29th International Conference on
Compiler Construction, San Diego, CA, USA, February 22-23, 2020,
Louis-Noël Pouchet and Alexandra Jimborean (Eds.). ACM, 85–95.

https://doi.org/10.1145/3377555.3377896
[16] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a

language and compiler for optimizing parallelism, locality, and recom-

putation in image processing pipelines. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan

(Eds.). ACM, 519–530. https://doi.org/10.1145/2491956.2462176
[17] Sven-Bodo Scholz. 2003. Single Assignment C: efficient support for

high-level array operations in a functional setting. J. Funct. Program.
13, 6 (2003), 1005–1059. https://doi.org/10.1017/S0956796802004458

[18] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe

Dubach. 2015. Generating performance portable code using rewrite

rules: from high-level functional expressions to high-performance

OpenCL code. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015, Kathleen Fisher and John H. Reppy (Eds.).

ACM, 205–217. https://doi.org/10.1145/2784731.2784754
[19] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017.

Lift: a functional data-parallel IR for high-performance GPU code

generation. In Proceedings of the 2017 International Symposium on Code
Generation and Optimization, CGO 2017, Austin, TX, USA, February 4-8,
2017, Vijay Janapa Reddi, Aaron Smith, and Lingjia Tang (Eds.). ACM,

74–85. http://dl.acm.org/citation.cfm?id=3049841

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/3122955.3122971
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://doi.org/10.1007/11546382_3
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2717511
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/3331553.3342614
https://doi.org/10.1145/3331553.3342614
https://doi.org/10.1145/3377555.3377896
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1145/2784731.2784754
http://dl.acm.org/citation.cfm?id=3049841

	Abstract
	1 Introduction
	2 Language Overview
	2.1 Type System
	2.2 Data Parallel Primitives

	3 Language Extensions
	3.1 Limitations
	3.2 Nats
	3.3 Dependent Pair Type
	3.4 Primitives Operating with Dependent Pairs

	4 Case Studies
	4.1 Dense to CSR Matrix Conversion
	4.2 CSR Sparse Matrix Vector Multiplication
	4.3 Breadth-First Search Frontier Expansion

	5 Compiler Implementation
	5.1 Dependent Pair Representation
	5.2 Primitives Implementation
	5.3 Memory Allocation
	5.4 Low Level Code Generation

	6 Evaluation
	6.1 Dense to Sparse Conversion
	6.2 Sparse Matrix Vector Multiplication
	6.3 Breadth First Search Frontier Expansion

	7 Related Work
	7.1 Data Parallel Functional Languages
	7.2 Streaming Irregular Arrays
	7.3 Dependently Typed Languages
	7.4 Domain Specific Compilers

	8 Conclusion
	Acknowledgments
	References

