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ABSTRACT
We introduce the Bayesian Compiler Optimization framework (BaCO),
a general purpose autotuner for modern compilers targeting CPUs,
GPUs, and FPGAs. BaCO provides the flexibility needed to handle
the requirements of modern autotuning tasks. Particularly, it deals
with permutation, ordered, and continuous parameter types along
with both known and unknown parameter constraints. To reason
about these parameter types and efficiently deliver high-quality
code, BaCO uses Bayesian optimization algorithms specialized to-
wards the autotuning domain. We demonstrate BaCO’s effective-
ness on three modern compiler systems: TACO, RISE&ELEVATE,
and HPVM2FPGA for CPUs, GPUs, and FPGAs respectively. For
these domains, BaCO outperforms current state-of-the-art auto-
tuners by delivering on average 1.36×–1.56× faster code with a tiny
search budget, and BaCO is able to reach expert-level performance
2.9×–3.9× faster.

CCS CONCEPTS
• Theory of computation → Mathematical optimization; •
General and reference → Performance.

KEYWORDS
Compiler optimizations, high-performance computing, Bayesian
Optimization, Autotuning, Autoscheduling

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0394-2/23/03.
https://doi.org/10.1145/3623278.3624770

ACM Reference Format:
Erik Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia Hsu,
Adel Ejjeh, Fredrik Kjolstad, Michel Steuwer, Kunle Olukotun, and Luigi
Nardi. 2023. BaCO: A Fast and Portable Bayesian Compiler Optimization
Framework . In 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 4 (ASPLOS
’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA,
22 pages. https://doi.org/10.1145/3623278.3624770

1 INTRODUCTION
Modern compilers are rapidly evolving to keep pace with the grow-
ing range of increasingly specialized hardware targets, as well as
the ever-changing domains of interest. A recent trend is to sepa-
rate policy (what to compute) from mechanism (transformations
and code generation describing how to compute) by using sched-
uling languages. Prominent examples of this paradigm include
Halide [44], TVM [7], TACO [49], and RISE&ELEVATE [19, 55].
This design pushes the optimization task of finding good sched-
ules outside of the compiler core, where it can be done manually
or automatically by an autoscheduler. Scheduling languages may
express more complex optimization spaces, and, thus, require more
advanced autotuning features to effectively and efficiently tackle
the autoscheduling task. Modern hardware backends—like GPUs, as
in RISE&ELEVATE [55], and FPGAs, as in HPVM2FPGA [13, 33]—
further increase the complexity of relevant optimization spaces.

The separation of concerns between policy and mechanism in
compilers exposes a great opportunity. If we can design a portable
autoscheduler that is effective across many compilers, like the de-
sign shown in Fig. 1, then we can reduce the complexity of the
overall ecosystem. New compilers get an autoscheduler with mini-
mal effort, and improvements in the autoscheduler automatically
benefit all compilers and their subsequent domains and backends.
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Figure 1: An autoscheduler that is portable across the sched-
uling languages of diverse compilers.

However, a portable autoscheduler must be designed with a rich
input language to allow users to accurately describe the search
space exposed by their particular compiler. This autoscheduling
search space is determined by the product of the hardware target,
the compiler’s scheduling language features and configuration tun-
ing parameters. In modern compilers, this search space is often
complex, including both continuous parameters (e.g., real-valued
tuning parameters), and discontinuous parameters broken down
into integers (e.g., tiling factors), permutation categories (e.g., loop
reordering), ordinals/ordered categories (e.g., unroll factors), and
categoricals/unordered categories (parallelization schemes). These
parameter types are often abbreviated to RIPOC [2, 22, 41].

However, even the large class of search spaces that can be gen-
erated as the Cartesian combination of these parameters is often
inadequate. Scheduling parameters frequently depend on the set-
tings of other parameters, leading to constraints on the scheduling
space. One such example is a loop bound that must be an exact mul-
tiple of a given tiling factor. We refer to these as known constraints,
which are provided to the autoscheduler ahead of time. Other con-
straints are initially unknown and must be learned throughout the
autoscheduling. An example of this is learning sets of parameters
that would generate programs that adhere to hardware constraints,
such as avoiding out-of-memory errors on a GPU. Such constraints
are often referred to as hidden constraints. For a general autotun-
ing framework to be efficient and portable across a multitude of
compilers, it needs to support as many of these features as possible.

Once able to express a complex search space, the autoscheduler
must be effective and efficient in finding a good schedule within
this space. For optimizing compilers, the performance of the gener-
ated code is of primary concern. Therefore, the autoscheduler will
invariably use some sort of search combined with a cost model to
evaluate points of the search space. The cost model could be ana-
lytic or data-driven, but the most accurate cost model is to generate
and run the code on its target platform. For a general autoscheduler
used across diverse compilers, a cost model based on running the
code makes it easy to use the autoscheduler with a new compiler.
We refer to empirical autoschedulers, whose cost model is to run
the actual code generated by the compiler, as autotuners. To achieve
composability, and to work effectively and easily across a diverse
set of compilers, it is vital for an autoscheduler to treat each com-
piler as a black-box system. The autoscheduler’s job will then be to
optimize the black-box system using the smallest possible budget
of trials and errors, i.e., evaluations of the black-box system.

Parameters Constraints
RIOC Perm. Hidden Known

ATF [46] ✓ × × ✓

OpenTuner [2] ✓ ✓ × ×
Ytopt [63] ✓ × × ✓

Kernel Tuner [61] ✓ × × ✓

KTT [43] × × × ✓

GPTune [38] ✓ × × ✓

HyperMapper [41] ✓ × ✓ ×
Bliss [48] × × × ×
DeepHyper [11] ✓ × × ✓*
SMAC3 [36] ✓ × × ✓*
GpyOpt [3] × × × ✓

Spearmint [52] ✓ × ✓ ×
GPflowOpt [28] × × ✓ ×
cBO [17] × × ✓ ×
BaCO (ours) ✓ ✓ ✓ ✓

Table 1: Framework capabilities; RIOC abbreviates Real/In-
teger/Ordinal/Categorical parameters. Limited support for
constraints is marked with ✓*.

Many successful autotuning frameworks have been proposed,
some of which are listed in Table 1. These frameworks have helped
deliver high-performance software in the past. However, they do
not support all features required to effectively search over the com-
plex search spaces described by diverse scheduling languages across
modern domain-specific compilers targeting various hardware back-
ends. For example, Table 2 shows the features required by three
modern compilers (TACO, RISE&ELEVATE, and HPVM2FPGA),
and Table 1 shows that none of 14 recently proposed autotuners
support all required features in the manner we define below. Some
of the frameworks in Table 1 do support some types of user-defined
constraints. Several frameworks are using ConfigSpace [35], which
supports conjunctions of linear constraints. While this is certainly
useful, it is inadequate for defining non-linear dependencies (see
frameworks marked with ✓*). The hidden constraints column in
Table 1 means that the framework uses specialized tools to han-
dle the constraint validity instead of assigning a high objective
value to infeasible configurations, such as OpenTuner. Handling
hidden constraints with a specialized tool distinguishes slow but
valid configurations from invalid configurations, providing more
information to the search mechanism. Lastly, while permutations
can be cast as categoricals, BaCO is the first autotuning framework
to make use of their underlying structure.

Hence, we propose BaCO, a novel general autotuning framework
optimized towards the autotuning of modern compilers, which effi-
ciently handles all features mentioned above. BaCO does not require
any user-provided cost model but instead learns from observations
from running the generated code throughout the optimization pro-
cedure. The support for sophisticated search spaces and online
learning means that BaCO finds good schedules in fewer iterations
than existing autotuners, while being easy to use. Notably, we do
not adapt BaCO to individual compilers nor applications but show
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Parameters Constraints
RIOC Perm. Hidden Known

TACO [26] ✓ ✓ ✓ ✓

RISE&ELEVATE [19] ✓ ✓ ✓ ✓

HPVM2FPGA [13] ✓ ✓

Table 2: Features needed by different compilers; RIOC abbre-
viates Real/Integer/Ordinal/Categorical parameters.

that it yields expert-level performance out of the box for a wide
range of applications. Our contributions are:

• The first Bayesian autotuning framework that supports all
RIPOC features, including permutation types, through the
definition of separate distancemetrics, thus improving search
performance (Sec. 3 and Sec. 4).

• The integration of a feasibility model for hidden constraints,
simplifying the portability to new compiler backends (Sec. 4).

• The first system to use the chain-of-tree technique in a
Bayesian optimization setting for portable autotuning on
sparse search spaces (Sec. 4).

• Applying autotuning to three distinct compiler frameworks
for different domains and hardware targets, along with a
survey of the autotuning challenges of those three recent
domain-specific compilers (Sec. 2).

The end result is that BaCO generates expert-level code signifi-
cantly faster than the state of the art. We demonstrate the effective-
ness and robustness of BaCO across three real-world compilers and
code generation systems targeting CPUs, GPUs, and FPGAs (Sec. 5).
BaCO reliably produces good schedules across different compilers
without any customization for each compiler, such as hyperpa-
rameter tuning or custom constraint filtering. It achieves expert
performance on TACO 3.15×–5.0× faster than the state-of-the-art,
while RISE& ELEVATE achieves 1.35×–1.58× better performance
with a tiny autotuning budget, and HPVM2FPGA achieves peak
performance 2.43×–2.77× faster.

2 COMPLEXITY OF MODERN AUTOTUNING
To develop the next generation general-purpose autotuning frame-
work, we need to better understand the real-life challenges faced
by various modern compiler frameworks. Therefore, we investigate
the autotuning features needed by the TACO, RISE&ELEVATE, and
HPVM2FPGA compiler frameworks. This will allow us to identify
an autotuning framework that is able to generalize across a wide
spectrum of compilers and backend targets. As we shall see, this
ideal general-purpose autotuning framework needs to support the
features described in Table 2, which includes support for a wide
range of parameter types and both hidden and known constraints.

The Tensor Algebra Compiler (TACO).. TACO [26] is the state-
of-the-art compiler for sparse tensor algebra. It generates high-
performance code for tensor operations expressed in a high-level
Einstein notation, such as the sampled dense-dense matrix multi-
plication (SDDMM) computation represented as 𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑗) ∗
𝐶 (𝑖, 𝑘) ∗ 𝐷 (𝑘, 𝑗). A particular strength of TACO is its capability to
generate code for a large variety of sparse tensor formats [8].

TACO’s scheduling language defines an iteration space trans-
formation framework that dictates how to traverse a tensor stored
in any particular format [49]. This provides a way to introduce
optimization transformations, such as tiling, parallelization, vec-
torization, loop reordering, and more. An autotuning framework
selecting the optimizations exposed by the scheduling language
needs to provide not just traditional real, integer, ordinals, and
categorical parameters as provided by most frameworks in Table 1,
but also permutation parameters for selecting loop reordering. Typ-
ically, optimization is performed inside the compiler and controlled
by a heuristic, but in TACO, as well as other similar compilers with
scheduling languages, it is exposed as a tunable parameter. These
optimization parameters also need to follow known constraints
that TACO provides. An example is loop reordering variables that
TACO enforces for concordant traversal.

RISE&ELEVATE.. RISE [55] and ELEVATE [19] are a powerful
combination of compiler and scheduling languages. Computations
are described in the RISE [55] language using well-known data-
parallel patterns like map and reduce in the spirit of LIFT [20, 56].
Optimizations are applied and described in the ELEVATE [19] sched-
uling language as compositions of semantic preserving rewrite-
rules. The optimized RISE program is compiled to high-performance
CPU or GPU code.

Transformations, such as loop tiling, may introduce numerical
tuning parameters, such as a tile size, which are often constrained
by other numerical values, such as loop bounds. When automat-
ically optimizing RISE programs, an explorative rewrite process
speculatively applying program transformations is performed. To
evaluate the performance of a transformed program, the system
relies on an autotuning framework to pick all numerical param-
eters while respecting all known parameter constraints that the
system can collect automatically and provide to the autotuning
framework. Compiling for GPUs also introduces hidden constraints
for the autotuning framework, such as choosing only parameter
values that will result in a program fitting in the tight register and
memory requirements. When these constraints are not satisfied, the
compiler generates code that will fail to execute. Therefore, the au-
totuning framework must be able to learn these hidden constraints
automatically.

HPVM2FPGA.. HPVM2FPGA [13] is a compiler that enables
hardware-agnostic programming of field-programmable gate arrays
(FPGAs). The compiler uses sophisticated optimizations, coupled
with design space exploration (DSE), to automatically tune and gen-
erate well-performing FPGA designs from programs that have not
been written by hardware and FPGA experts. HPVM2FPGA is part
of the Heterogeneous Parallel Virtual Machine (HPVM) compiler
infrastructure [12, 33], which provides a retargetable virtual ISA
and compiler IR for programming heterogeneous systems.

During HPVM2FPGA’s DSE, compiler transformations, such as
loop unrolling, greedy loop fusion, argument privatization, and
kernel fusion are explored. HPVM2FPGA generates its parameter
space automatically through a static analysis of the IR, and the
design space varies depending on the size of the application being
compiled. The majority of the parameters are boolean parameters,
with hidden constraints among them, making it challenging to
explore the space efficiently.
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Figure 2: Overview of the BaCO framework.

3 THE BACO FRAMEWORK
We introduce Bayesian Compiler Optimization (BaCO)1, a Bayesian
optimization (BO) framework that learns high-performing auto-
scheduling strategies. BaCO thrives in a small data world where
configuration evaluations are costly, either due to high runtimes
of the kernel or expensive simulations of code generation passes.
BaCO is backend-agnostic, and it can be equally applied to CPU,
GPU, and FPGA compilers. Building on the BO paradigm, BaCO is
centred around a configuration recommendation-evaluation loop: it
recommends promising new configurations that are subsequently
scheduled and evaluated by the corresponding compiler toolchain.
The evaluation results are used to fit two predictive models: one
modelling the predicted value and one modelling the predicted
probability of feasibility of new configurations. To initialize the
two models, the procedure starts with an initial phase, where the
first few configurations are sampled uniformly at random from the
search space.

However, for BO to reach its full potential, it needs to be cus-
tomized for autotuning tasks. This section explains the various
modules of BaCO’s architecture, shown in Fig. 2, whereas further
specialization towards autotuning search spaces is emphasized in
Sec. 4.

3.1 Bayesian optimization
Bayesian optimization is a steadily growing methodology for solv-
ing black-box optimization problems. Those are problems where the
objective function 𝑓 (𝒙) can only be accessed point-wise through
expensive evaluations. At the core of BO is the use of a surrogate
model, which estimates the objective function. This helps with per-
forming well-informed decisions about which configurations to
evaluate next. The goal is to find a good configuration in as few
evaluations as possible. The most common choices of surrogate
model are Gaussian Process (GP) or Random Forest (RF) predictors,
which both provide useful uncertainty estimates. For any given
1Baco is Italian for bug.

point 𝒙 , the model provides mean and variance, which is used to bal-
ance exploration and exploitation. This trade-off is quantified by an
acquisition function. Common examples are Expected Improvement
and Lower Confidence Bound. The surrogate model is dynamically
updated to learn from observations, creating a feedback loop where
the BO framework proposes new points, that are then evaluated.
The information from the evaluation is subsequently used to train
the model. BO was historically developed for continuous compact
domains, and the extension towards more exotic search spaces is
currently being used in this work and studied by the BO community.

3.2 Surrogate models over compiler domains
Choice of probabilistic model. One core element of an efficient

BO algorithm is an accurate surrogate model [15]. While complex
parameter domains have little impact on less intricate methods
such as random sampling, the success of BO depends greatly on
clever handling of such parameters. While traditionally, Random
Forests have been considered the natural choice as surrogate models
over discrete domains [4, 23, 41], recent studies show that a careful
implementation of Gaussian Processes yields superior accuracy [9,
18]. However, to achieve the true potential of GPs in autotuning
and DSE applications, significant customization of the GP is needed.
This customization is explained in detail in the following sections.
Sec. 5.3 shows the impact of some of these major design choices
and a comparison between GPs and RFs.

GP kernel similarity function. A key feature in autotuning and
DSE is the mixed-variable search space. Thus, the kernel needs to
combine distance measures over different parameter types. We pro-
pose the weighted Euclidean norm | |𝒅 | |22 =

∑𝐷
𝑖=1 (𝑑𝑖/𝑙𝑖 )

2 over the
vector of individual distance measures 𝒅, as a unified distance mea-
sure. 𝐷 denotes the dimension of the search space, i.e., the number
of parameters being optimized, and 𝑙𝑖 are the horizontal length-
scales, learned using maximum likelihood estimation (MLE) [40],
weighting the different parameters. We use the 5/2-Matérn ker-
nel [47], given by

𝑘 (𝒙, 𝒙 ′) = 𝜎

(
1 +

√
5𝑑 + 5𝑑2

)
𝑒−

√
5𝑑 , (1)

𝑑 =

√√√
𝐷∑︁
𝑖=1

𝑑 (𝑥𝑖 , 𝑥 ′𝑖 )2

𝑙2
𝑖

(2)

where 𝑑 (𝑥𝑖 , 𝑥 ′𝑖 ) denotes the distance between 𝑥𝑖 and 𝑥 ′𝑖 (described
in Sec. 4.1), as this has shown to be efficient in many real life
applications [27, 58]. To increase stability, we assume that the value
observed in each evaluation, 𝑦 (𝒙), is perturbed by some normally
distributed noise [15], such that 𝑦 (𝒙) = 𝑓 (𝒙) + Y and Y ∼ 𝑁 (0, 𝜎Y ).

GP hyperparameter optimization. A crucial element in effective
optimization using GPs is to find good hyperparameters for the
model. Especially important are the length-scales 𝑙𝑖 presented in
Eq. (2), which balance the importance ratio between different pa-
rameters. The remaining hyperparameters are the outputscale 𝜎 in
Eq. (1), and the magnitude of the Gaussian noise 𝜎Y . BaCO optimizes
the hyperparameters using a multistart gradient descent approach,
which first uniformly samples a number of possible hyperparameter
settings, then chooses a fraction of those with highest likelihood,
and optimizes them individually using L-BFGS [37].
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Discrete parameter spaces offer a number of practical challenges
when fitting the GP model. One such challenge is that the model
hyperparameter optimization method described above frequently
prefers to give close to zero lengthscale values to some parameters.
In practice, this means that configurations which take different
values for those parameters have close to zero similarity, making
the GP behave as a sparse model. This is undesirable as it reduces
the model’s expressive power. To address this artifact of GP model-
ing, as well as to stabilize the hyperparameter selection, BaCO uses
gamma priors [40] for the lengthscales. These priors are chosen to be
flexible while cutting out extreme hyperparameter settings. In prac-
tice, stabilizing the lengthscales means that different parameters
are given more equal importance, preventing certain parameters
from becoming too dominant or too insignificant due to model
over-fitting. Gamma prior distributions are chosen as they have
positive support, can be made reasonably concentrated and have
long tails towards both zero and infinity. Other good alternatives
with similar properties would be the log-normal or inverse-gamma
distributions. By normalizing the input data, BaCO can use a single
set of priors that works well for the majority of parameters. Note
that, this is an artifact from that many parameters take identical
values in discrete spaces, which rarely occurs when working with
continuous parameters.

3.3 Acquisition function
The acquisition function quantifies the anticipated utility of evaluat-
ing a new point. We use the Expected Improvement (EI) acquisition
function [25], which balances exploration and exploitation. Auto-
tuning and DSE are characterized by both discrete search spaces and
noisy function evaluations, in which case we observe that standard
EI has a tendency to overly prioritize re-sampling points with good
values. To avoid this unintended behavior, we propose a modified EI
acquisition function which predicts the expected improvement of
observing a noise free evaluation of the blackbox function. Comput-
ing the EI without considering the noise in the GP makes sampling
repeated points less likely.

BaCO optimizes the acquisition function by multi-start local
search. Initially, a large number of configurations are sampled at
uniformly random, of which the best configurations are chosen as
starting points for the local search. Neighbours are defined as all
configurations that can be reached by modifying a single parameter.

4 ADAPTING TO EXOTIC SEARCH SPACES
When implementing an efficient autotuning framework, effectively
handling all of the search space features is key. As BaCO is built
around a GP predictive model, careful design of the distance metrics
used for different variable types is of additional importance. In this
section we study the intricacies of the different parameter types as
well as how to handle known and hidden constraints.

4.1 Parameter types
Continuous, integer, and ordinal parameters. These types of pa-

rameters have the property that the values are comparable, i.e., you
can use the greater or equal sign to order them. This can naturally
and explicitly be translated into a distance metric, and in particular

we use the absolute difference, 𝑑 (𝑥𝑖 , 𝑥 ′𝑖 ) = |𝑥𝑖 − 𝑥 ′
𝑖
|. However, cer-

tain such parameters are innately exponential in nature, such as tile
size parameters. In that case, we use the Euclidean distance over
a log-transformed space instead, 𝑑 (𝑥𝑖 , 𝑥 ′𝑖 ) = | log𝑥𝑖 − log𝑥𝑖 ′ |. The
log transformation often more accurately describes the relationship
between values. Consider tile sizes as an example. We expect the
tile sizes 2 and 4 to be roughly as similar to each other as the tile
sizes 512 and 1024. However, the tile sizes 512 and 514 would be
much more similar than the pairs above.

Categorical parameters. Categorical parameters differ from ordi-
nals in that they have no inherent order. Here, we use the Hamming
distance, defined as 𝑑ℎ (𝑥𝑖 , 𝑥 ′𝑖 ) = 1𝑥𝑖≠𝑥

′
𝑖
, where 1 is the indicator

function, which returns 1 if 𝑥𝑖 ≠ 𝑥 ′
𝑖
and 0 otherwise. In other words,

the Hamming distance only considers whether the parameter val-
ues are identical or not. The scale here is not relevant as the distance
is weighted by the lengthscale 𝑙𝑖 in Eq. (2).

Permutation parameters. Permutation parameters are used to
describe the reordering of a sequence of elements. In compiler
applications this most commonly appears as the reordering of a
set of loops [22]. Consider for example a kernel with four nested
loops (𝑙1, 𝑙2, 𝑙3, 𝑙4) which can be performed in any order. This or-
dering can be represented by a single permutation variable 𝝅 ,
which is a vector whose element 𝑖 , given by 𝜋𝑖 = 𝑗 , describes
the index 𝑗 of loop 𝑙𝑖 in the new order. For example, the permuta-
tion 𝝅 = [2, 4, 3, 1] corresponds to the following loop reordering:
for (l1 ... )

for (l2 ... )

for (l3 ... )

for (l4 ... )

...

→

for (l4 ... )

for (l1 ... )

for (l3 ... )

for (l2 ... )

...

Prior black-box optimization literature, autotuning, and DSE frame-
works lack the capability to effectively handle this variable type,
with the notable exception of OpenTuner [2]. In BO frameworks
employing GPs, it is important to accurately estimate how different
permutations relate to each other. In other words, for the nested
loop reordering example above, the framework needs to determine
if the two different loop orderings are likely to yield a similar per-
formance. One naive way of handling permutation variables is to
treat them as categorical variables, e.g., to consider one nested loop
ordering to be equally similar to every other loop ordering (with the
exception of itself). This, however, ignores the underlying structure
that can be used to define a more refined similarity measure. We
instead present three different semimetrics for permutations: the
Kendall distance, Spearman’s rank correlation, and the Hamming
distance. While the semimetrics are not strictly distance metrics,
Lomelí et al. [39] show that they can be used to form a valid GP
kernel. These three semimetrics are illustrated in Fig. 3 on a set of
four elements, where the two boxes represent two permutations
𝜋 = [1, 2, 3, 4] and 𝜋 ′ = [2, 4, 3, 1].

The first semimetric is the Kendall distance,

𝑑𝑘 (𝜋, 𝜋 ′) =
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

|1𝜋 ′
𝑖
>𝜋 𝑗

− 1𝜋𝑖>𝜋 ′
𝑗
|.

The Kendall distance represents the number of discordant pairs, i.e.,
the elements that have swapped order between the two permuta-
tions. Each discordant pair is represented by a green, interconnected
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3 1 0 2

Figure 3: Illustration of similarity metrics between two per-
mutations. The number of discordant pairs (top of right-hand
box, green) is the Kendall distance, the squared elementmove-
ment (bottom of right-hand box, blue) is the Spearman’s rank
correlation, and the number of changing elements (triangles,
orange) is the Hamming distance.

double arrow. The second semimetric is the Spearman’s rank corre-
lation,

𝑑𝑠 (𝜋, 𝜋 ′) =
𝑚∑︁
𝑖=1

(𝜋𝑖 − 𝜋 ′
𝑖 )

2,

which is the sum of squared movements of the elements between
two permutations. It is illustrated with blue arrows in Fig. 3, where
the dots represent the starting points and the arrows the final posi-
tion. For example, the number two starts in the second position in
𝜋 (left) and moves to the fourth position in 𝜋 ′ (right), meaning that
it has travelled a distance of two. The Spearman’s rank correlation
then sums the squared displacement of all elements. Note that the
square substantially emphasizes large rank changes. Lastly, the
Hamming distance,

𝑑ℎ (𝜋, 𝜋 ′) =
𝑚∑︁
𝑖=1

1𝜋𝑖≠𝜋
′
𝑖
,

is the number of elements in 𝜋 that are no longer at their original
position in 𝜋 ′ – represented with orange triangles in the figure.

For a given permutation set, the choice of semimetric depends
on how those permutation parameters are expected to impact the
performance metric. Intuitively, Kendall distance focuses more
on parameter order, whereas Spearman’s rank correlation empha-
sizes large movements of individual elements. The Hamming dis-
tance only considers the number of elements changed and ignores
where they moved to. As an example, consider the two loop orders
for (l2 ... )

for (l3 ... )

for (l1 ... )

for (l4 ... )

...

and

for (l4 ... )

for (l3 ... )

for (l1 ... )

for (l2 ... ).

...

They have a high Spearman’s rank correlation due to the largemove-
ment of the first and last element and relatively smaller Kendall and
Hamming distances, which is intuitive given the compiler transfor-
mation that this represents. This is backed by our ablation analysis
in Sec. 5.3, where we observe that using Spearman’s rank correla-
tion outperforms the other alternatives. By consequence, we use
Spearman’s rank correlation as a default setting for permutation
variables in BaCO.

4.2 Parameter constraints
For an autotuning framework to be truly competitive in the com-
plex world of modern autoscheduling, it is essential to effectively
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2 4
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4 8
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Figure 4: Chain-of-Trees with 5 parameters, 𝑝1 to 𝑝5.

handle constraints in the parameter search space. Constraints can
be divided into known constraints, which are known prior to opti-
mization, and hidden constraints, which are only discovered during
optimization. BaCO is designed to support both these constraints.

Known constraints. In autotuning applications, users often pos-
sess expert knowledge regarding parameter configurations that
lead to inefficient or even infeasible schedules. Incorporating this
knowledge into the autotuning framework leads to significant per-
formance improvements. The improvement becomes even greater
when the feasible set makes up a small fraction of all possible con-
figurations, i.e., when the search space is sparse. BaCO handles
known constraints during the acquisition function optimization,
and proposes only feasible configurations. As such, the surrogate
model trains exclusively on feasible points.

BaCO uses a Chain of Trees (CoT) data structure to deal with
sparse search spaces, which was first presented by Rasch et al. [46].
The CoT computes all of the feasible configurations a-priori and
stores them as a collection (or “chain”) of trees. Each tree corre-
sponds to a group of co-dependent parameters, and parameters in
different trees are independent of one another. For each tree, each
level of the tree corresponds to a single parameter and each node in
that level corresponds to a possible value for that parameter. Each
path from the root to a leaf then represents a partial configuration,
and the tree is built so that only feasible configurations are included.
Consider for example the following search space:

𝑝1 ∈ {2, 4}, 𝑝2 ∈ {2, 4}, 𝑝3 ∈ {1, 4}, 𝑝4 ∈ {1, 2, 4}, 𝑝5 ∈ {2, 4, 8}

𝑝1 ≥ 𝑝2, 𝑝4 ≥ 𝑝3, 𝑝5 ≥ 2𝑝4
In this example, there are five input parameters and three con-

straints. Parameters 𝑝1 and 𝑝2 as well as parameters 𝑝3, 𝑝4, and
𝑝5 are co-dependent. We represent them with the CoT shown in
Fig. 4. As the parameters in different trees are independent, any
combination of partial feasible configurations from the different
trees yields a feasible configuration. For example, the leftmost path
in the left tree combined with the rightmost path in the right tree
yields the feasible configuration

(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5) = (2, 2, 4, 4, 8) .
The use of the Chain-of-trees in BaCO is threefold. First random

sampling can be made directly from the CoT. Secondly, instead of
evaluating the constraints explicitly, it is significantly more efficient
to check whether the configuration belongs to the CoT. Thirdly, it
allowsworkingwith highly sparse search spaces which are common
in the autotuning domain. In such sparse spaces, operating directly
on the original domain becomes infeasible.2

2In the results section, we have used domain expert knowledge to manually transform
the search spaces to limit the sparsity. This allows a more interesting comparison with
previous methods.
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Working with constrained spaces is inherently biased since the
optimization method presented in Rasch et al. [45] prioritizes dif-
ferent configurations depending on the structure of the CoT. Their
approach is equivalent to random sampling a configuration from
the CoT by starting at each root node and then iteratively choosing
a child with uniform probability, which is biased towards config-
urations in less dense parts of the tree. This bias is furthermore
dependent on the order in which the parameters appear in the
tree, which is an undesirable feature. We propose an alternative
approach where we instead sample uniformly from the leaves of
the trees, which is bias-free, meaning that the random sampling
will be performed uniformly on the all the configurations. We study
the impact of the bias in Sec. 5.

Another source of sparsity comes from how parameters are
defined prior to optimization. In autotuning and DSE applications,
due to the nature of how computers store information, parameters
are often constrained to take exponential values. Treating such
parameters as integers leads to sparsity in the search spaces. BaCO
instead applies the logarithmic transformation to such parameters.
This transformationmakes the search space significantly denser and
yields more natural distances for the GP. These qualities improve
performance, as we shall see in Sec. 5.

Hidden constraints. Requiring the complete feasible domain defi-
nition from the user would severely limit the autotuner’s usability.
Some constraints are either too complicated to describe analyti-
cally or unknown a-priori. Instead, BaCO supports the concept
of hidden constraints, learned automatically during optimization.
BaCO uses a Random Forest model to predict the probability of
feasibility for each configuration. It then extends the EI acquisition
function presented in Sec. 3.3, by multiplying the EI with the prob-
ability of feasibility [41]. This should be compared with the naive
approach of assigning high objective values to infeasible config-
urations, which suffers from difficulties with setting an accurate
penalty. Such penalty terms are further often detrimental for the
statistical model.

However, the practical interaction between the acquisition func-
tion based on the GP model and the RF feasibility predictor is com-
plex. There is a constant trade-off between the feasibility model
wanting to select feasible points and the value predictor that seeks
to explore the unexplored infeasible regions. If the surrogate model
becomes excessively confident within the feasible region, this bal-
ance tends to be skewed. In which case the selection fails to reliably
find feasible points. As a practical solution, we consider a minimum
feasible limit Y𝑓 and only consider configurations with probability
of feasibility greater than Y𝑓 for evaluation. By randomly sampling
a new Y𝑓 each iteration, with 𝑝 (Y𝑓 = 0) > 0, we asymptotically
guarantee to not cut away any solutions by doing this.

5 EVALUATION
We validate the efficiency, effectiveness, and generalizability of
BaCO. We first introduce the reference autotuning methods that we
use as a baseline to evaluate the performance of BaCO, followed by
the benchmarks from the three real-world frameworks presented
in Sec. 2. We then show the performance results. For lack of space
we show the extensive empirical results on all the frameworks
and benchmarks in Appendix A. All experiments are run for 30

repetitions. We also show a wall-clock time analysis of all the
autotuners used in Appendix B. The BaCO code is open-source and
available at https://github.com/baco-authors/baco.

We answer the following research questions (RQ):
RQ1) Does BaCO achieve high performance with a limited autotun-

ing budget? The evaluation in Fig. 5 shows that, with a tiny budget
of 20–40 evaluations, depending on the complexity of the bench-
mark, BaCO achieves 1.35×–1.55× better performance than the
state-of-the-art baselines. Furthermore, BaCO consistently achieves
expert-level performance with a small budget of 40–80 evaluations,
where the baselines struggle to achieve expert-level performance
even with a much larger budget. This demonstrates the advantage
of BaCO to deliver high performance for a small budget, even for
complex search spaces.

BaCO delivers on average 2.87×–3.87× faster than the state-
of-the-art autotuning frameworks. Fig. 6 highlights the quicker
performance evolution of BaCO for representative benchmarks, and
a more detailed breakdown is presented in Table 9 in the appendix.
These results show that BaCO delivers performance much quicker
than the baselines.

RQ2) Does BaCO generalize across compiler frameworks and bench-
marks? Our evaluation across three diverse real-world compiler
frameworks shows consistently that BaCO significantly outper-
forms the baselines. In fact, BaCO is the only framework that
outperforms the expert configuration on all benchmarks across
compiler frameworks, as shown in Fig. 6, with a more detailed
breakdown in Table 5 in the appendix. This observation suggests
that the techniques discussed in the paper generalize well across
compiler frameworks and benchmarks.

RQ3) What is the performance benefit of customizing Bayesian
optimization for compiler autotuning? Our system demonstrates
advantages over prior work BO-based autotuning frameworks not
specifically customized for compiler domains (Ytopt in Fig. 8). As
explained in Sec. 3 and Sec. 4, these improvements validate our
design choices and suggests that there are significant performance
benefits to be gained by customizing the BO framework for this
particular domain.

RQ4) What are the findings of autotuning our distinct real-world
compilers using BaCO? This question attempts to provides insight
on why BaCO outperforms baselines for our real-world compiler
benchmarks. We identify three main areas: exploration of new con-
figurations, testing schedules that did not previously exist in prior
work, and better handling of both known and unknown constraints
for complex real-world applications. Evaluations for this question
comes from Fig. 5, Fig. 7, and Fig. 11 in the Appendix.

5.1 Baseline Methods
To contextualize the performance of BaCO, we evaluate it along-
side two state-of-the-art autotuning frameworks and two random
sampling approaches.

ATF with OpenTuner The Auto-Tuning Framework (ATF) [46]
extends the popular OpenTuner [2] to handle known constraints.
We chose OpenTuner as a baseline since it is one of the leading
frameworks for autotuning.

Ytopt Ytopt [63] is an autotuning framework using BO and is
part of the PROTEAS-TUNE project [1]. It supports both Random

https://github.com/baco-authors/baco
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Forests and Gaussian processes.We run it here with Random Forests
as the GP implementation does not support constraints. When
infeasible solutions are found due to hidden constraints, they are
added to the data set with a high objective value. We compare
against Ytopt since it is one of the only frameworks that supports
either constraints or GP. When addressing RQ3, we run Ytopt with
GPs.

Uniform and CoT random sampling These are uniform ran-
dom sampling methods. The CoT random sampling is a method that
randomly samples at uniform directly from the CoT. This baseline
allows us to study the impact of the bias introduced by the known
constraints, as explained in Sec. 4.2.

Default and expert configurations For reference, we show
the performance of two baseline configurations: The default con-
figuration, and an expert configuration, carefully handcrafted by
domain experts in the respective programming languages. It is
unlikely that a developer would exceed the expert performance
baseline, which makes it a suitable data point for our empirical anal-
ysis. The HPVM2FPGA benchmarks are automatically generated
by the autoscheduler and do not provide any expert configurations,
in which case we only report the default. The expert configura-
tions are taken from prior publications: TACO [49], RISE & EL-
EVATE [19, 29, 54, 57], and HPVM2FPGA [13]. The original au-
thors used manual or semi-automated methods to determine well-
performing configurations based on their experience, hardware
characteristics, or data properties. The authors had the incentive
to produce the best configurations but, presumably due to time
constraints, they may have occasionally missed better-performing
configurations.

5.2 Benchmarks
BaCO is evaluated over 15 kernels from linear algebra, machine
learning, image processing, statistics, and signal processing. We
integrate BaCO in the three real-world frameworks presented in
Sec. 2. The benchmarks have been chosen based on prior work by
the authors of the three frameworks. Furthermore, most of these
benchmarks have an expert optimized code which allows for a fair
comparison. The search space size ranges from tens of thousands to
billions of configurations, as described in Table 3, which is beyond
the scope of exhaustive search.

To define the evaluation budget for each benchmark, we first
establish a full budget for each benchmark, as shown in the last
column of Table 3. The full budget is defined using a rule of thumb
of around 5 to 6 minutes. This max compilation time is commonly
adopted in large companies, such as Google. We then define tiny
and small budgets as 1/3 and 2/3 of the full budget.

TACO benchmarks We benchmark 5 tensor algebra expres-
sions, commonly used in machine learning and tensor factoriza-
tion [16]. Namely, they comprise of sparse matrix-vector multi-
ply (SpMV) 𝑎𝑖 =

∑
𝑘 𝐵𝑖 𝑗𝑐𝑘 , sparse matrix multiply (SpMM) 𝐴𝑖 𝑗 =∑

𝑘 𝐵𝑖𝑘𝐶𝑘 𝑗 , sampled dense-dense matrix multiply (SDDMM) 𝐴𝑖 𝑗 =∑
𝑘 𝐵𝑖 𝑗𝐶𝑖𝑘𝐷 𝑗𝑘 , tensor times vector (TTV) 𝐴𝑖 𝑗 = 𝐵𝑖 𝑗𝑘𝑐𝑘 , and fourth-

order matricized tensor times Khatri-Rao product (MTTKRP) 𝐴𝑖 𝑗 =

𝐵𝑖𝑘𝑙𝑚 ∗𝐶𝑘 𝑗 ∗𝐷𝑙 𝑗 ∗𝐸𝑚𝑗 . Each tensor expression is given a scheduling
template that exposes tiling parameters (split and unrolling factors)
and permutation parameters (loop reorderings). BaCO searches for

Benchmark Dim Constr. Feasible Full
Params Space size Budget

TACO
SpMV 7 O/C/P 1.5 × 107 3.0 × 106 70
SpMM 6 O/C/P K 5.2 × 1011 4.7 × 104 60

SDDMM 6 O/C/P K 5.2 × 1011 7.8 × 104 60
TTV 7 O/C/P K/H 1.5 × 107 6.0 × 106 70

MTTKRP 6 O/C/P K 1.5 × 106 6.8 × 105 60
RISE&ELEVATE

MM_CPU 5 O/P K/H 1.0 × 107 2.9 × 104 100
MM_GPU 10 O K/H 1.1 × 1011 1.5 × 108 120

Asum_GPU 5 O K 1.2 × 106 6.3 × 104 60
Scal_GPU 7 O K/H 3.9 × 107 4.2 × 106 60

K-means_GPU 4 O K/H 1.4 × 104 3.6 × 103 60
Harris_GPU 7 O K 7.7 × 109 1.0 × 107 100
Stencil_GPU 4 O K 1.4 × 104 3.6 × 103 60

HPVM2FPGA
BFS 4 I/C H 256 256 20

Audio 15 I/C H 8.4 × 105 8.4 × 105 60
PreEuler 7 I/C H 1.5 × 104 1.5 × 104 60

Table 3: We evaluate BaCO on 15 important kernels from
domains like machine learning, statistics, and signal pro-
cessing. The benchmarks expose search spaces with varying
number of parameters (Dim). They cover all parameter types
considered (Params): real (R), integer (I), ordinal (O), categor-
ical (C), and permutation (P). Constr. describes the type of
constraints used by the benchmark: known (K) and hidden
(H) constraints. Space size describes the number of possible
configurations in the dense search space with Feasible de-
noting all valid configurations with respect to the known
constraints. Full Budget is the total number of evaluations
we allow for autotuning the kernel.

the set of parameters, and therefore the schedule, that yields the
best performance. The characteristics of these parameters and the
search space is described in Table 3. We use tensors from a wide
variety of real-world applications ranging from power networks
and circuits to fluid dynamics and social networks. We run ma-
trix expressions on a subset of SuiteSparse matrices [10, 31] and
synthetic uniform random tensors, and we run higher-order ex-
pressions on the Facebook Activities tensor [59], a subset of the
FROSTT tensor collection [51], and synthetic tensors as well (see
Table 4). The selected tensors vary widely across tensor properties
including number of nonzeroes, dense dimension size, and irregular
nonzero pattern.

The TACO benchmarks were run on nodes with two Intel Xeon
Gold 6130 processors locked at 2100Ghz, using all 32 cores and
96GB of RAM.

RISE&ELEVATE benchmarks We use six benchmarks cover-
ing multiple domains, optimizations, and hardware devices. This
results in benchmarks requiring various autotuning features, as
described in Table 3.

The CPU Matrix Multiplication (MM_CPU) benchmark from
[19] is run on a CPU and applies tiling, vectorization, and loop-
permutation optimizations. The remaining benchmarks are run
on a GPU and apply GPU-specific optimizations, including the
OpenCL-specific work-group configuration, memory hierarchies,
and coalescing. The MM_GPU and K-means_GPU dense linear alge-
bra benchmarks are inspired by implementations used in [56]. The
linear algebra algorithms Asum_GPU and Scal_GPU are from [54],
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Matrix Dimension Nonzeroes Dataset
ACTIVSg10K 20, 000 × 20, 000 135, 888 SS
email-Enron 36, 692 × 36, 692 367, 662 SS

Goodwin_040 17, 922 × 17, 922 561, 677 SS
scircuit 170, 998 × 170, 998 958, 936 SS
filter3D 106, 437 × 106, 437 2, 707, 179 SS

laminar_duct3D 67, 173 × 67, 173 3, 788, 857 SS
cage12 130, 228 × 130, 228 2, 032, 536 SS

smt 25, 710 × 25, 710 3, 749, 582 SS
random2 10, 000 × 10, 000 5, 000, 000 Rand
random1 1000 × 500 × 100 5, 000, 000 Rand
facebook 1, 504 × 42, 390 × 39, 986 737, 934 FB

uber 183 × 24 × 1, 140 × 1, 717 3, 309, 490 FT
nips 2, 482 × 2, 482 × 14, 036 × 17 3, 101, 609 FT

chicago 6, 186 × 24 × 77 × 32 5, 330, 673 FT
uber3 183 × 1, 140 × 1, 717 1, 117, 629 FT*

Table 4: Tensors used in our TACO benchmarks from the
SuiteSparse matrix collection (SS) [10, 31], Facebook Activi-
ties graph (FB) [59], FROSTT (FT) collection [51] or syntheti-
cally generated (Rand).
*Wemodify a FROSTT 4-tensor to a 3-tensor by dropping one
dimension since the next largest FROSTT tensor has more
than 75× the number of nonzeros.

the stencil from [57]. The remaining image processing algorithm
Harris_GPU is a corner detector described in [29].

The RISE&ELEVATE evaluation was executed on 8 cores of an
Intel Xeon E5-2650 v3 @2.30Ghz processor accompanied by 32 GB
of RAM. For the GPU benchmarks, we used a NVIDIA K80 GPU.

HPVM2FGA benchmarksWe use the benchmarks presented
in [13]: (1) Breadth First Search (BFS), and (2) the computational
fluid dynamics algorithm of eulerwith pre-computed fluxes (PreEuler),
are taken from the Rodinia Benchmark suite [6], and (3) 3D Spacial
Audio Encoder (Audio) from the ILLIXR testbed [24]. The bench-
marks represent diverse workloads from different domains with
varying parameter space sizes, ranging from 4 parameters for BFS,
to 15 for Audio.

We ran these benchmarks through HPVM2FPGA’s optimizer,
reporting the estimated execution time targeting an Intel Arria 10
GX FPGA in our evaluation results.

5.3 Results
RQ1) Does BaCO achieve high performance with a limited
autotuning budget? Fig. 5 shows the average performance of
BaCO and the baselines for three different levels of autotuning
budget for all our benchmarks. The tiny budget is only 20-40
evaluations.3 BaCO clearly outperforms the baselines, delivering
on average better performance than all baselines for 19 out the
24 benchmarks. For TACO, the tiny budget is even sufficient to
deliver expert-level performance. With the small budget, BaCO
delivers expert performance for all three compiler frameworks.
The baselines struggle to deliver good performance even with the
full budget, particularly for the challenging spaces in the RISE
benchmarks. Tables 6, 7, and 8 in the appendix show the detailed
performance results for each individual benchmark and autotuning
framework.

BaCO also achieves performance faster, i.e., it reaches the final
performance of the other baselines using fewer configuration eval-
uations. Fig. 6 shows the performance evolution for three selected

3Besides the BFS benchmark, for which it is only 6 evaluations
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Figure 5: Average performance relative to expert with a tiny
budget (1/3 of the full budget), a small budget (2/3 of the
full budget) and the full budget. BaCO delivers the highest
performance for each budget and achieves expert-level per-
formance consistently with the small budget.

benchmarks, and that BaCO delivers performance with 2.9×–5×
fewer evaluations than ATF and Ytopt. On average, BaCO finds the
best ATF and Ytopt configurations 2.87× and 3.82× faster, respec-
tively. Our experiments confirm that these results generalize well
across our benchmarks, however, due to space constraints these
additional results are presented in Table 6 in the Appendix.

RQ2) Does BaCO generalize across compiler frameworks?
To see how the performance generalizes, we show in Fig. 7 (and
Fig. 11 in the Appendix) how the mean of the best-found solution
by each framework improves over time for each individual bench-
mark. In the figures, the average performance is plotted for each
method and each benchmark. The goal is to achieve a lower value,
which identifies a better-performing configuration, and to find low
values as far to the left as possible, which means using a low tuning
budget. The performance of the default configuration and expert
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Figure 6: Evolution of average best runtime for one kernel from each framework. The figure is split vertically into two different
scales. BaCO reaches the final performance of the state-of-the-art methods using as little as 30% of the function evaluations of
the other methods.

configuration is presented for reference when available. We further
denote when each method reaches expert-level performance with
a star, such that a shorter distance between the y-axis and the star
is better. As finding improvement over the default configuration
initially is easy, we split the plots into two regions with different
scales. This helps focus on the interesting part closer to the expert-
level performance. BaCO reliably yields high-level performance
and overall provides the best schedule in 22 out of the 24 bench-
marks. It is further frequently the only method to reach expert-level
performance within the given budget.

RQ3) What is the performance benefit of customizing
Bayesian optimization for compiler autotuning? We study
the BaCO design by running three matrices for SpMM with default
settings and with a number of major features turned off. We use
the SpMM benchmark as it is reasonably well-behaved and only
has few constraints. The average speedup over expert is shown in
Fig. 8. We denote the restricted version by BaCO--. In more detail,
BaCO-- is BaCO without variable transformations, model priors,
and local search for the acquisition function. It further uses the
naive distance for permutation variables that ignores their under-
lying structure and it does not use BaCO’s more advanced fitting
of the GP hyperparameters. We see that by doing those changes,
BaCO takes about a 20% performance loss.

Next, we compare it with the GP implementation of Ytopt. Ytopt
uses none of the above mentioned features, but additionally has a
less advanced GP and BO toolkit. Ytopt only supports constraints
for RF so this Ytopt configuration does not support constraints.
However, for this benchmark we have manually pruned the search
space for Ytopt, so that the only remaining constraint is a single less-
than relationship between two variables. BO with GPs requires a
lot of care to be efficient, which we see from the difference between
Ytopt (GP) and BaCO--.

Lastly, we show the difference between a well implemented GP
and RF as surrogate model. Especially for smaller budgets, the GP
model shows much stronger performance. This is relevant as there
is currently a paradigm shift towards using GPs in discrete settings.

Ablation analysis To further understand the impact of the dif-
ferent design choices in BaCO, we perform an ablation analysis

in Fig. 9. The impact of the permutation kernel, variable trans-
formations and model priors are studied in an ablation analysis.
First, BaCO in default settings is presented, which is using Spear-
man’s rank correlation for permutation variables. Then we study
the impact of changing the permutation metric to Kendall distance,
Hamming distance, as well as the naive approach of treating per-
mutations as categorical variables (Sec. 4.1). The Spearman metric
yields the best performance, especially in early iterations.

Secondly, we study the impact of removing the logarithmic trans-
formations of variables and output (Sec. 4.2), and the model priors
(Sec. 3.2). Removing the log transforms significantly deteriorates
the performance at all evaluation counts. The lengthscale priors,
however, have a larger impact early on, where they work to stabi-
lize the procedure, and become less important when more data has
been observed with which to fit the model.

Overall, we see that the changes have a much larger impact early
on, but except for transformations, ignoring any of the individual
features fails to prevent good performance after more iterations. It
is noteworthy that no individual design choice has a major impact,
but together they make a large difference.

Hidden constraintsNext, we study the impact of the predicting
feasibility with respect to hidden constraints on two benchmarks
from the RISE/ELEVATE suite. In Figure 10, we show the average
improvement over expert after 20, 40, 60 iterations with and with-
out the feasibility predictor. Additionally, we show the impact of
the minimum feasibility limit presented in Sec. 4.2. It shows that
the hidden constraints predictor has a significant positive impact,
particularly after more iterations where it has had more samples to
train on. But it also indicates that the introduced minimum feasibil-
ity limit (Sec. 4.2) is important to stabilize the interaction between
the feasibility predictor and the surrogate model.

Chain-of-Trees Even after manual sparsity-reducing transfor-
mations, some of the search spaces remain highly sparse. When this
is the case, CoTs greatly increases the efficiency of sampling from,
and searching, the parameter domain. On the MM_GPU search
space for example, over ten runs, using the CoTs reduced the time
spent on evaluating constraints in the local search by a factor 6×
and the random sampling by a factor of 80×. Overall, this resulted
in that the time spent by the internal working of BaCO was reduced
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Figure 7: Evolution of average best runtime among evaluated configurations for selected benchmarks from Table 3. Fig. 11 in
the Appendix contains from Table 3 not shown here. The figure is split vertically into two different scales, and we mark the
iteration where each method beats the expert configuration with a star.

by 70%. For even more sparse search spaces, operating directly on
the search space quickly becomes untenable.

RQ4) What are the findings of autotuning our distinct
real-world compilers using BaCO?

Configuration insight BaCO underperforms baselines in only
1 of our 24 (4%) benchmarks across the 15 kernels. Opentuner is
able to beat out BaCO (as shown in Fig. 7) when running SpMV on
cage12 (see Table 4). The SpMV benchmark is interesting as it has
a good default setting, but ill-designed schedules can increase the
run time by several orders of magnitude. After inspection of the
configurations, it shows that ATF picks configurations similar to
its previous configurations. This behavior in ATF exploits sampling
around prior good configurations each evaluation, whereas BaCO’s
algorithm is more explorative in finding completely new configu-
rations. Exploiting configurations works for simple kernels, like
SpMV, but fails for real-world kernels with increased complexity

and runtime variance. Exploitation sampling is likely to get stuck in
a local minima, which is more likely to be globally bad for complex
problems (as is the case with TTV on the random1 in Fig. 11 in
the Appendix). We do not augment BaCO in any specific manner
to explore configurations, but the global nature of the BO para-
digm emphasizes exploration over methods with local-exploration
elements such as OpenTuner.

Performance over expert BaCO is able to achieve better than
expert performance in some cases (see Fig. 5). Even experts in the
domain, with insight of the underlying hardware architecture, may
miss out on the optimal configuration and the best performance
simply due to the amount of user-time needed to explore the vast
search space of possible configurations. BaCO allows users to au-
tomate that search while potentially offering better performance
than the expert could find. For example, BaCO is able to find over a
1.1× speedup on average for TACO (see Fig. 5) since experts in [49]
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Figure 8: Geometric mean of the performance relative to the
expert configuration for the TACO SpMM kernel applied to
the filter3D, email-Enron and amazon0312 matrices after 20,
40 and 60 evaluations.

Figure 9: Geometric mean of the performance relative to
the expert configuration for the SpMM kernel applied to the
filter3D, email-Enron and amazon0312 matrices after 20, 40
and 60 evaluations. (Note the cut axis).

only considered the default loop ordering (permutation) for all ex-
pressions. In addition, many of the configurations the autotuner
discovers are hard to find by hand due to the concordant traversal
of a compressed tensor data structure. Therefore, it is difficult for
an expert to search the space of loop orderings and know which of
them are infeasible.

Constraints in real-world applications Over half (8/15) of
our benchmarks, and notably all of the HPVM2FPGA benchmarks,
use hidden constraints. Additionally, all but one benchmark uses
known constraints, significantly reducing the feasible search space
as shown by the Feasible column in Table 3. Predictor modeling
of hidden constraints has a significant impact on performance (as
discussed in RQ3), and this impact is apparent in our real-world
compiler benchmarks.
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Figure 10: Geometric mean of the performance relative to the
expert configuration for the MM_GPU and Scal_GPU kernels
after 20, 40 and 60 evaluations.

6 RELATEDWORK
Bayesian optimization for autotuning Several Bayesian opti-
mization frameworks have been presented for autotuning [38, 41,
61, 63]. One of the earlier frameworks was introduced by Nelson
et al. [42], who present SURF that uses Random Forests models
to optimize tensor constraction operations on GPUs. This work
is later extended to become Ytopt by Wu et al. [63]. The authors
use the skopt Bayesian optimization framework to optimize LLVM
Clang/Polly pragma configurations on the PolyBench benchmark
suite. Ytopt further allows the usage of additional surrogate models
such as Gaussian Processes and Boosted Trees. Ytopt implements
a method based on Bayesian optimization, which BaCO builds on.
However, we show that the Bayesian optimization pipeline needs to
be further customized to work well on autotuning domains, which
is the scope of our work. The work by Sid-Lakhdar et al. [50] focuses
on the meta- and multi-task learning aspect. It was extended by Liu
et al. [38] into the GPTune framework. The authors use linear core-
gionalization models (LCMs), to model multiple similar problems
simultaneously to increase efficiency. This was further extended by
Zhu et al. [65] to also handle multifidelity applications. While this
is out of the scope of the current work, the use of meta-learning
can be used in combination to BaCO to achieve greater efficiency.
Willems et al. [61] use Bayesian optimization to autotune GPU
kernels using Gaussian Processes and known constraints on the
search space. Another recent approach is Bliss by Roy et al. [48],
that probabilistically chooses a combination of models and acquisi-
tion functions each new optimization iteration based on previous
performance observations. Bliss’ approach is orthogonal to BaCO
and it is possible that combining the methods further efficiency
can be achieved. Recently, Dorier et al. [11] present DeepHyper, a
Bayesian optimization framework for HPC storage system autotun-
ing, that focuses on transfer learning through the use of variational
autoencoders.

Bayesian optimization for design space exploration Nardi
et al. [30, 41] use Bayesian optimization with a RFs surrogate model
to optimize FPGAs. They consider both multiobjective and hidden



BaCO: A Fast and Portable Bayesian Compiler Optimization Framework ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

constraints. Ejjeh et al. [13] use the same DSE framework to tune
hardware-agnostic programs targeting FPGA backends. [53] design
a human-centric DSE approach, where expert priors accelerate the
convergence of the autotuner. While this is not the focus of our
work, a simple adaptation of the BaCO acquisition function can
benefit the same user priors when available.

There is substantial work in the literature about DSE techniques
in HLS [5, 14, 60, 62, 64]. However, most existing work focuses on
using DSE for tuning HLS, rather than using it to select compiler
optimizations [5, 14, 64]. These works are not based on Bayesian
optimization and we view them as complementary to our work.

The phase-ordering problem Autoscheduling tackles the task
of applying a number of transformations to optimize a kernel au-
tomatically. Typically, the scheduling language parametrizes the
application of those transformations by a bounded set of options
whichwe refer to as parameters that are easier to optimize over. This
parametrization approach is the one used by TACO and ELEVATE.
However, a different approach is to operate directly on the space of
transformations. Optimization over this unbounded tree-like space
is commonly known as the phase-ordering problem [21, 22, 32, 34].

7 CONCLUSIONS AND FUTUREWORK
We introduce the Bayesian Compiler Optimization framework (BaCO),
a plug-and-play solution to autoscheduling tasks for modern sched-
uling languages targeting various hardware backends. BaCO is able
to reach expert-level performance 2.7×-10× faster than the state
of the art autotuners. The separation of concerns between policy
and mechanism allows compiler users to delegate the complex and
time-consuming task of scheduling to BaCO so that they can focus
on their applications instead.

While we show that BaCO can provide high-performing solu-
tions in less than 100 seconds, this time is still too long for use in
software development. The holy grail of autoscheduling is to be
able to use an autotuner during the development, and ideally enable
the user to run autotuning every time they compile their code. That
way users can check both functional and non-functional proper-
ties on a regular basis during the various program lifecycle phases.
Indeed, increasing the efficiency of the autotuner would enable a
new level of autotuning-in-development-loop paradigm which is
not accessible with the current state of autotuning technology.
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A ADDITIONAL RESULTS
In this Appendix, we present the results shown in Sec. 5.3 in greater detail.

Fig. 11 shows the remaining benchmarks not in Fig. 7. The takeaway is similar, that BaCO finds the expert-level-performing configurations
much faster than the other benchmarks, and that it consistently finds better configurations than the other benchmarks after only a few
iterations after the learning phase starts. However, the additional benchmarks indicates that it generalizes well.

Table 5 shows for each autotuning framework and benchmark how many individual autotuning runs with a full budget managed to reach
the expert performance. The results show that BaCO reaches the expert-level performance in 575 out of 750 runs (76%).

Tables 6, 7, and 8 show the relative performance achieved compared to an expert with the tiny, small, and full budgets. Table 9 presents the
factors showing how much faster BaCO reaches the best performance of the other methods. On average, BaCO reaches ATF’s performance
2.87× faster and Ytopt’s performance 3.87× faster.
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shown in Fig. 7. The figure is split vertically into two different scales and the iteration where each method beats the expert
configuration is marked with a star.
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Framework Benchmark BO ATF Ytopt Uniform CoT
TACO (SpMM) scircuit 30 24 16 14 12
TACO (SpMM) cage12 30 22 8 12 13
TACO (SpMM) laminarduct3D 30 18 6 6 9
TACO (SDDMM) email-Enron 30 25 17 10 18
TACO (SDDMM) ACTIVSg10K 30 28 19 11 14
TACO (SDDMM) Goodwin040 30 24 18 10 12
TACO (MTTKRP) uber 24 21 4 3 6
TACO (MTTKRP) nips 24 20 9 7 15
TACO (MTTKRP) chicago 21 22 14 0 0
TACO (TTV) facebook 30 27 16 22 20
TACO (TTV) uber3 16 14 3 3 3
TACO (TTV) random 18 17 16 17 17
TACO (SpMV) laminarduct3D 13 14 1 1 3
TACO (SpMV) cage12 13 27 8 9 8
TACO (SpMV) filter3D 9 27 3 4 2

TACO 348 330 158 129 152
RISE & ELEVATE MM-CPU 22 15 6 2 1
RISE & ELEVATE MM-GPU 19 10 1 1 0
RISE & ELEVATE Asum-GPU 29 9 5 3 3
RISE & ELEVATE Scal-GPU 21 1 0 2 1
RISE & ELEVATE K-means-GPU 25 15 3 5 6
RISE & ELEVATE Stencil-GPU 18 4 8 0 0

RISE & ELEVATE 149 68 23 23 13
HPVM2FPGA BFS 29 0 4 2 7
HPVM2FPGA Audio 23 4 1 0 0
HPVM2FPGA PreEuler 26 6 4 6 4

HPVM2FPGA 78 10 9 8 11
Table 5: Out of 30 autotuning runs with the full budget, how many reached expert-level performance.
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Framework Benchmark BaCO ATF Ytopt Uniform CoT
TACO (SpMM) scircuit 1.16 0.67 0.58 0.59 0.61
TACO (SpMM) cage12 1.14 0.74 0.53 0.70 0.72
TACO (SpMM) laminarduct3D 0.96 0.34 0.35 0.38 0.35
TACO (SDDMM) email-Enron 1.05 0.91 0.78 0.86 0.91
TACO (SDDMM) ACTIVSg10K 1.02 0.90 0.83 0.88 0.89
TACO (SDDMM) Goodwin040 1.04 0.88 0.81 0.79 0.86
TACO (MTTKRP) uber 0.30 0.20 0.16 0.17 0.33
TACO (MTTKRP) nips 0.67 0.64 0.50 0.49 0.75
TACO (MTTKRP) chicago 0.76 0.58 0.61 0.39 0.60
TACO (TTV) facebook 0.70 0.25 0.33 0.52 0.47
TACO (TTV) uber3 0.73 0.38 0.46 0.51 0.38
TACO (TTV) random 1.30 0.86 0.35 0.92 1.26
TACO (SpMV) laminarduct3D 0.60 0.35 0.42 0.43 0.36
TACO (SpMV) cage12 0.53 0.85 0.33 0.30 0.39

TACO 0.83 0.63 0.49 0.54 0.61
RISE & ELEVATE MM-CPU 0.89 0.81 0.79 0.78 0.78
RISE & ELEVATE MM-GPU 0.28 0.17 0.28 0.25 0.14
RISE & ELEVATE Asum-GPU 0.59 0.35 0.34 0.29 0.35
RISE & ELEVATE Scal-GPU 0.34 0.06 0.12 0.11 0.06
RISE & ELEVATE K-means-GPU 0.82 0.61 0.22 0.35 0.53
RISE & ELEVATE Stencil-GPU 0.88 0.78 0.72 0.73 0.73

RISE & ELEVATE 0.65 0.48 0.41 0.46 0.44
HPVM2FPGA BFS 0.48 0.18 0.60 0.28 0.29
HPVM2FPGA Audio 0.93 0.71 0.83 0.64 0.70
HPVM2FPGA PreEuler 0.46 0.36 0.32 0.37 0.38

HPVM2FPGA 0.62 0.42 0.58 0.43 0.46
All 0.76 0.56 0.49 0.50 0.55

Table 6: Relative performance compared to expert with the tiny budget (1/3 of the full budget). Values larger than 1 indicate a
performance advantage over the expert. Values below 1 indicate a performance disadvantage compared with the expert.
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Framework Benchmark BaCO ATF Ytopt Uniform CoT
TACO (SpMM) scircuit 1.25 0.96 0.77 0.78 0.77
TACO (SpMM) cage12 1.35 0.99 0.80 0.84 0.82
TACO (SpMM) laminarduct3D 1.16 0.60 0.45 0.50 0.51
TACO (SDDMM) email-Enron 1.08 1.01 0.91 0.92 0.98
TACO (SDDMM) ACTIVSg10K 1.04 1.01 0.91 0.94 0.93
TACO (SDDMM) Goodwin040 1.08 1.00 0.90 0.91 0.95
TACO (MTTKRP) uber 0.42 0.38 0.24 0.27 0.43
TACO (MTTKRP) nips 0.94 0.92 0.68 0.68 0.85
TACO (MTTKRP) chicago 0.90 1.00 0.74 0.54 0.72
TACO (TTV) facebook 2.13 0.75 0.53 0.93 0.87
TACO (TTV) uber3 1.00 0.69 0.52 0.67 0.55
TACO (TTV) random 6.29 1.42 0.84 1.83 2.40
TACO (SpMV) laminarduct3D 0.88 0.74 0.48 0.56 0.52
TACO (SpMV) cage12 0.65 1.17 0.44 0.48 0.54
TACO (SpMV) filter3D 0.66 1.28 0.42 0.34 0.43

TACO 1.39 0.93 0.64 0.75 0.82
RISE & ELEVATE MM-CPU 0.98 0.90 0.85 0.81 0.82
RISE & ELEVATE MM-GPU 0.84 0.38 0.40 0.36 0.19
RISE & ELEVATE Asum-GPU 1.20 0.58 0.38 0.41 0.49
RISE & ELEVATE Scal-GPU 0.88 0.09 0.19 0.15 0.09
RISE & ELEVATE K-means-GPU 1.00 0.74 0.34 0.44 0.65
RISE & ELEVATE Stencil-GPU 0.94 0.86 0.76 0.81 0.80
RISE & ELEVATE Harris-GPU 0.95 0.79 0.80 0.61

RISE & ELEVATE 0.97 0.62 0.49 0.54 0.52
HPVM2FPGA BFS 1.00 0.34 0.70 0.56 0.50
HPVM2FPGA Audio 1.00 0.90 0.91 0.86 0.83
HPVM2FPGA PreEuler 0.78 0.45 0.36 0.50 0.48

HPVM2FPGA 0.92 0.57 0.66 0.64 0.61
All 1.22 0.80 0.61 0.67 0.71

Table 7: Relative performance compared to expert with the small budget (2/3 of the full budget). Values larger than 1 indicate a
performance advantage over the expert. Values below 1 indicate a performance disadvantage compared with the expert.
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Framework Benchmark BaCO ATF Ytopt Uniform CoT
TACO (SpMM) scircuit 1.31 1.12 0.85 0.90 0.91
TACO (SpMM) cage12 1.37 1.08 0.82 0.90 0.92
TACO (SpMM) laminarduct3D 1.24 0.77 0.48 0.52 0.63
TACO (SDDMM) email-Enron 1.08 1.04 0.96 0.95 1.00
TACO (SDDMM) ACTIVSg10K 1.04 1.03 0.98 0.96 0.99
TACO (SDDMM) Goodwin040 1.09 1.05 0.96 0.95 0.98
TACO (MTTKRP) uber 1.00 0.64 0.24 0.38 0.54
TACO (MTTKRP) nips 1.00 1.00 0.81 0.78 0.91
TACO (MTTKRP) chicago 1.00 1.05 0.88 0.61 0.80
TACO (TTV) facebook 2.52 1.90 0.65 1.25 1.16
TACO (TTV) uber3 1.00 0.75 0.61 0.69 0.62
TACO (TTV) random 8.82 3.32 1.81 2.32 2.90
TACO (SpMV) laminarduct3D 0.98 0.91 0.54 0.60 0.68
TACO (SpMV) cage12 0.77 1.48 0.47 0.63 0.62

TACO 1.66 1.24 0.77 0.86 0.95
RISE & ELEVATE MM-CPU 1.02 0.93 0.88 0.83 0.83
RISE & ELEVATE MM-GPU 1.05 0.49 0.49 0.44 0.29
RISE & ELEVATE Asum-GPU 1.25 0.67 0.43 0.50 0.58
RISE & ELEVATE Scal-GPU 1.08 0.14 0.23 0.23 0.14
RISE & ELEVATE K-means-GPU 1.02 0.84 0.40 0.54 0.79
RISE & ELEVATE Stencil-GPU 0.98 0.91 0.85 0.84 0.82

RISE & ELEVATE 1.06 0.69 0.55 0.61 0.59
HPVM2FPGA BFS 1.00 0.45 0.74 0.69 0.67
HPVM2FPGA Audio 1.00 0.94 0.94 0.90 0.91
HPVM2FPGA PreEuler 1.00 0.50 0.51 0.57 0.56

HPVM2FPGA 1.00 0.63 0.73 0.72 0.71
All 1.41 1.01 0.71 0.76 0.83

Table 8: Relative performance compared to expert with the full budget. Values larger than 1 indicate a performance advantage
over the expert. Values below 1 indicate a performance disadvantage compared with the expert.
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Framework Benchmark ATF Ytopt Uniform CoT
TACO (SpMM) scircuit 3.33× 5.00× 4.62× 4.62×
TACO (SpMM) cage12 3.53× 6.00× 5.45× 5.00×
TACO (SpMM) laminarduct3D 4.00× 5.45× 5.00× 4.29×
TACO (SDDMM) email-Enron 3.75× 4.62× 4.62× 4.29×
TACO (SDDMM) ACTIVSg10K 1.88× 4.62× 5.45× 3.75×
TACO (SDDMM) Goodwin040 2.40× 4.29× 4.62× 4.00×
TACO (MTTKRP) uber 1.40× 4.62× 1.88× 1.43×
TACO (MTTKRP) nips 1.03× 2.31× 2.40× 1.58×
TACO (MTTKRP) chicago - 2.14× 3.53× 2.86×
TACO (TTV) facebook 1.76× 3.00× 2.40× 2.50×
TACO (TTV) uber3 2.86× 3.53× 3.16× 3.33×
TACO (TTV) random 1.67× 2.07× 2.07× 1.67×
TACO (SpMV) laminarduct3D 1.09× 3.33× 2.86× 2.73×
TACO (SpMV) cage12 - 4.00× 1.76× 1.76×

TACO 3.15× 5.00× 4.96× 4.32×
RISE & ELEVATE MM-CPU 2.22× 3.03× 3.85× 3.85×
RISE & ELEVATE MM-GPU 2.03× 1.97× 2.18× 2.93×
RISE & ELEVATE Asum-GPU 2.73× 3.53× 3.33× 3.00×
RISE & ELEVATE Scal-GPU 4.62× 3.75× 3.75× 4.62×
RISE & ELEVATE K-means-GPU 2.73× 6.00× 5.00× 3.16×
RISE & ELEVATE Stencil-GPU 2.50× 3.53× 3.53× 3.75×

RISE & ELEVATE 2.68× 3.38× 3.51× 3.55×
HPVM2FPGA BFS 2.86× 2.00× 2.22× 2.22×
HPVM2FPGA Audio 2.86× 2.86× 3.16× 3.00×
HPMV2FPGA PreEuler 2.61× 2.61× 2.00× 2.07×

HPVM2FPGA 2.77× 2.49× 2.46× 2.43×
all 2.87× 3.82× 3.86× 3.63×

Table 9: Factors showing how much faster BaCO reach the best performance of the other methods. E.g., a factor of 3.33×
indicates that BaCO required 3.33× less evaluations to achieve the same performance. ”-” indicates that the average final
performance of BaCO was lower than ATF.
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B WALL CLOCK TIME ANALYSIS
In Table 10, we show the average wall clock time of BaCO and the baselines for the TACO SpMM and SDDMM benchmarks. The breakdown
of the wall clock time is given by two main factors: 1) the evaluations of the black-box function, and 2) the computing time for the autotuner
to generate its recommendations. The most expensive part of the autotuning process is the first factor, where the program kernel is evaluated
a number of times corresponding to the budget allocated. Thus, methods that recommend slow-to-evaluate configurations tend to use more
wall clock time per evaluation. The second factor relates to the internal workings of an autotuner search method. In this regard, the more
intricate model-based methods tend to be slower, but this cost becomes less prominent when optimizing larger program kernels. This factor
is highly dependent on the quality of the software implementation of the autotuner. It is beyond the scope of this work to provide the
fastest implementation of both BaCO and the baselines — In Table 10 we give a rough analysis of the current average wall clock time for all
autotuners, which will likely be improved in future releases of these tools. We observe that while BaCO uses a more complex method than
the baselines it is the second fastest method behind ATF. ATF uses OpenTuner which employs search algorithms based on heuristics —
These are usually faster than model-based approaches such as BaCO. We can see this insight reflected also in the Ytopt wall clock time.

BaCO ATF w. Ytopt Uniform CoT
OpenTuner sampling samp.

SpMM 262 144 309 402 336
SDDMM 263 197 274 433 381

Table 10: Average wall clock time in seconds for BaCO and the baselines on the TACO SpMM and SDDMM benchmarks.
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