
Descend: A Safe GPU Systems Programming Language

BASTIAN KÖPCKE, University of Münster, Germany

SERGEI GORLATCH, University of Münster, Germany

MICHEL STEUWER, Technische Universität Berlin, Germany

Graphics Processing Units (GPU) o�er tremendous computational power by following a throughput oriented

paradigm where many thousand computational units operate in parallel. Programming such massively parallel

hardware is challenging. Programmers must correctly and e�ciently coordinate thousands of threads and

their accesses to various shared memory spaces. Existing mainstream GPU programming languages, such as

CUDA and OpenCL, are based on C/C++ inheriting their fundamentally unsafe ways to access memory via

raw pointers. This facilitates easy to make, but hard to detect bugs, such as data races and deadlocks.

In this paper, we present Descend : a safe GPU programming language. In contrast to prior safe high-level

GPU programming approaches, Descend is an imperative GPU systems programming language in the spirit

of Rust, enforcing safe CPU and GPU memory management in the type system by tracking Ownership and

Lifetimes. Descend introduces a new holistic GPU programming model where computations are hierarchically

scheduled over the GPU’s execution resources: grid, blocks, warps, and threads. Descend’s extended Borrow

checking ensures that execution resources safely access memory regions without data races. For this, we

introduced views describing safe parallel access patterns of memory regions, as well as atomic variables. For

memory accesses that can’t be checked by our type system, users can annotate limited code sections as unsafe.

We discuss the memory safety guarantees o�ered by Descend and evaluate our implementation using

multiple benchmarks, demonstrating that Descend is capable of expressing real-world GPU programs showing

competitive performance compared to manually written CUDA programs lacking Descend ’s safety guarantees.

CCS Concepts: • Software and its engineering→ Parallel programming languages; Imperative languages;

• Theory of computation→ Logic and veri�cation.

Additional Key Words and Phrases: GPU programming, language design, memory safety, type systems

ACM Reference Format:

Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer. 2024. Descend : A Safe GPU Systems Programming

Language. Proc. ACM Program. Lang. 8, PLDI, Article 181 (June 2024), 24 pages. https://doi.org/10.1145/3656411

1 INTRODUCTION

Graphics Processing Units (GPUs) are massively parallel hardware devices with a throughput
oriented design that prioritizes the runtime of the overall computation performed in parallel by
thousands of collaborating threads over single thread performance, as classical CPUs do [Garland
and Kirk 2010]. This has made GPUs attractive devices in many domains where high performance is
crucial, such as in scienti�c simulations, medical imaging, and most prominently, machine learning.

Writing correct and e�cient software for GPUs is challenging even for advanced programmers.
The predominant languages for general purpose GPU programming, CUDA and OpenCL, are low-
level imperative systems programming languages, giving programmers great control to precisely

Authors’ addresses: Bastian Köpcke, University of Münster, Münster, Germany, bastian.koepcke@uni-muenster.de; Sergei

Gorlatch, University of Münster, Münster, Germany, gorlatch@uni-muenster.de; Michel Steuwer, Technische Universität

Berlin, Berlin, Germany, michel.steuwer@tu-berlin.de.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART181

https://doi.org/10.1145/3656411

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-5271-6893
HTTPS://ORCID.ORG/0000-0003-3857-9380
HTTPS://ORCID.ORG/0000-0001-5048-0741
https://doi.org/10.1145/3656411
https://orcid.org/0000-0001-5271-6893
https://orcid.org/0000-0003-3857-9380
https://orcid.org/0000-0003-3857-9380
https://orcid.org/0000-0001-5048-0741
https://doi.org/10.1145/3656411

181:2 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

CUDA

1 __global__ void transpose(const double *input, double *output) {

2 __shared__ float tmp[1024];

3 for (int j = 0; j < 32; j += 8) {

4 tmp[threadIdx.y+j *32+threadIdx.x] =

5 input[(blockIdx.y*32+threadIdx.y+j)*2048 + blockIdx.x*32+threadIdx.x]; }

6 __syncthreads();

7 for (int j = 0; j < 32; j += 8) {

8 output[(blockIdx.x*32+threadIdx.y+j)*2048 + blockIdx.y*32+threadIdx.x] =

9 tmp[threadIdx.x*32+threadIdx.y+j]; } }

Listing 1. A CUDA matrix transposition GPU kernel. A subtle indexing bug in line 4 leads to a data race.

in�uence how each thread accessesmemory andwhen it performswhich computational instructions.
This control is needed to extract the expected high performance from GPUs, where the di�erence
between an unoptimized naive implementation and a fully optimized implementation can be up to
two orders of magnitude [Hijma et al. 2023]— often signi�cantly more than on CPUs.
Unfortunately, in CUDA and OpenCL, this level of control comes with signi�cant challenges

for GPU programmers. As both languages are based on C/C++ they inherit their fundamentally
unsafe ways to access memory via raw pointers. Furthermore, to coordinate threads and ensure a
consistent view of the memory, manual synchronization primitives must be used correctly. This
leads to easy-to-make, but often hard to detect bugs, particularly race conditions when accessing
the same memory from multiple threads and deadlocks when using synchronization incorrectly.

Listing 1 shows a CUDA kernel function, executed in parallel on the GPU to transpose a matrix. In
lines 4–5, each thread copies four matrix elements into a bu�er and then—after a synchronization—
copies the transposed elements to the output. The correctness of this function depends on correct in-
dexing which is notoriously tricky. In fact, Listing 1 contains a subtle bug: In line 4, threadIdx.y + j

should be enclosed by parenthesis, so that both terms are multiplied by 32. As a result, a data race
occurs as multiple threads will write uncoordinated into the same memory location.

Rust has demonstrated that a systems programming language can be designed in a memory safe
way without losing low-level control. It prevents data races, by forbidding the concurrent access
of threads to a memory resource if at least one thread is allowed to mutate it [Jung et al. 2021].
Rust enforces this with its type system, speci�cally with borrow checking, that interacts with the
concepts of ownership and lifetimes which primarily ensure safe memory management. Could Rust
have prevented the bug in Listing 1? Clearly, tmp is shared among the parallel executing threads
and, clearly, we mutate its content in line 5. Therefore, Rust would reject this kernel, without
even attempting to investigate if the indexing is safe, as Rust’s type system has no capabilities of
reasoning about safely accessing an array in parallel by multiple threads.

In this paper, we introduce Descend , a safe GPU programming language adapting and extending
the ideas of Rust towards GPU systems. In contrast to prior safe GPU programming approaches,
such as Futhark [Henriksen et al. 2017], Descend is an imperative systems programming language
empowering programmers to exercise low-level control with a safety net.

Listing 2 shows the matrix transposition function in Descend . In contrast to CUDA, this function
is not implicitly executed by thousands of GPU threads, instead this function is executed by the
(one) GPU grid. Programmers describe the hierarchical scheduling of the computation over the
grid, �rst by describing the scheduling of blocks (line 4) and then the nested threads (line 5). Each
block has access to its own shared memory that is passed into the function in line 2. Each thread

performs the same copies as in CUDA, �rst from the input into the temporary bu�er, and then—after

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:3

Descend

1 fn transpose(input: &gpu.global [[f64;2048];2048], output: &uniq gpu.global [[f64;2048];2048],

2 [grid.blocks.forall(X).forall(Y)] tmp: &uniq gpu.shared [[f64;32];32]

3) -[grid: gpu.grid<XY<64,64>,XY<32,8>>]-> () {

4 sched(Y,X) block in grid {

5 sched(Y,X) thread in block {

6 for i in 0..4 {

7 tmp.group_by_row::<32,4>[[thread]][i] =

8 input.group_by_tile::<32,32>.transpose[[block]].group_by_row::<32,4>[[thread]][i] };

9 sync(block);

10 for i in 0..4 {

11 output.group_by_tile::<32,32>[[block]].group_by_row::<32,4>[[thread]][i] =

12 tmp.group_by_row::<32,4>[[thread]][i] } } } }

Listing 2. A Descend function performing a memory safe matrix transposition.

a synchronization— back into the output. Instead of raw indexing, in Descend programmers use
memory views to describe parallel accesses into memory. Descend statically ensures that accesses
into views are safe, and treats them specially in the type system. This restricts memory accesses to
safe parallel access patterns. Compositions of views allow for describing complex memory accesses.
For the example, the borrow checking of Descend is capable to statically determine that the parallel
write access into the shared temporary bu�er and the output are safe. Similarly, Descend statically
enforces the correct use of the synchronization, that cannot be forgotten or placed incorrectly.

Descend is a holistic programming language for heterogeneous systems comprised of CPU and
GPU. The physically separated memories of CPU and GPU are re�ected in the types of references for
which Descend enforces that they are only dereferenced in the correct execution context. Functions
are annotated with an execution resource (as seen in the function signature in line 3) indicating how
a function is executed. These annotations make important assumptions, that are implicit in CUDA,
about how many threads and blocks execute a kernel, explicit and enforceable by the type system.
With Descend , we explore one new point in the design space of GPU programming languages,

aiming to uniquely combine the imperative nature and low-level control with the safety so-far
only found in higher level GPU programming approaches. As we will see in this paper, Descend
empowers programmers to safely control low-level details including memory layout and which
thread accesses which memory location when. This allows expressing GPU algorithms safely, that
cannot be described natively by the user and are built-in in existing safe GPU approaches.

In summary, this paper makes the following contributions:

• we introduce Descend , a safe GPU systems programming language in the spirit of Rust;
• we identify the challenges of GPU programming and discuss howDescend assists in addressing
them (Section 2);

• we discuss how the concepts of execution resources, place expressions, and memory views

provide the bases for enforcing memory safety, and how atomics and unsafe enable escaping
the restrictive safe Descend code when required (Section 3);

• we present Descend ’s formal type system and extended borrow checking (Section 4);
• and show in an experimental evaluation that programs written in Descend achieve the same
performance as equivalent programs written in CUDA, that lack Descend ’s safety guarantees
(Section 5).

We discuss related work and conclude in sections 6 and 7.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:4 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

2 CHALLENGES OF GPU PROGRAMMING

GPU programming brings a number of challenges, that we group in two areas: 1) challenges from
working with the execution and memory hierarchies of GPUs, such as thousands of threads grouped
in blocks accessing various GPU memories; and 2) challenges from coordinating the heterogeneous
system, such as transferring data between CPU and GPU memory. Before we discuss each area, we
give a brief overview of the traditional GPU programming model established by CUDA.
CUDA is a sophisticated programming language with many advanced features that have been

added over years to keep pace with evolving hardware capabilities. In this paper, we focus on
a subset of the CUDA features to capture the core essence of CUDA and model it in Descend .
Therefore, we focus our discussion in this section on these core features and point out signi�cant
advanced features of CUDA, that we hope we will be able to model with Descend in the future.

2.1 The CUDA GPU Programming Model

In CUDA, programmers write kernel functions that are executed in parallel on the GPU. These
functions are executed by many thousands of threads, all executing the same code. Therefore,
on a �rst view, the CUDA programming model resembles traditional data-parallel programming
models, where a single instruction is applied to multiple data elements in lock-step. However,
in CUDA this strict requirement is relaxed as code can branch based on the thread index that
identi�es the individual thread. It is usually used for indexing into arrays so that each thread
processes a di�erent array element. Thread indices are integers used to index plain C-style arrays,
making statically checking the safety of parallel memory accesses challenging and leading to data
races being introduced easily. Furthermore, kernels are often written with implicit assumptions
about how many threads execute them, making kernels hard to understand without knowing these
assumptions which are an additional source of bugs, when CPU and GPU code diverge over time.
GPUs are comprised of multiple Streaming Multiprocessors (SM), each capable of executing

groupings of 32 parallel threads, called warps, simultaneously. Threads are hierarchically organized
into groups, that are executed independently by the SMs. In CUDA, such groups of threads are
called blocks. The collection of all blocks is called the grid.
Similarly, memory is organized hierarchically as well and closely connected to the execution

hierarchy. In software, separate address spaces re�ect the di�erent kinds of GPU memory. The
slowest and largest memory is global memory, which is accessible by each thread in the entire grid.
Each block provides the fast shared memory which is accessible only by each thread in the block.
Lastly, each thread has exclusive access to its own and fastest private memory. Data transferred
from the host to the GPU is always stored in global memory. In order to exploit the faster memories,
data has to be copied explicitly between address spaces.

2.2 Challenges of the Execution & Memory Hierarchies

The CUDA programming model with its execution and memory hierarchies, resembles closely the
GPU hardware and enables scalability of GPU programs, but it comes with two major challenges:
how to avoid data races and how to correctly synchronize the threads of a block.

Data Races. Data races occur when multiple threads simultaneously access the same memory
location and at least one performs a write. It is easy to create a data race in CUDA:

CUDA

1 __global__ void rev_per_block(double *array) {

2 double *block_part = &array[blockIdx.x * blockDim.x];

3 block_part[threadIdx.x] = block_part[blockDim.x-1 - threadIdx.x]; }

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:5

In this example, that is inspired by a bug in a real-world kernel described by Wu et al. [2020], the
input array is split into independent parts for each block. Then the threads in each block access a
single element in the reverse order of their thread index and write the value back into the array at
their thread index. This creates a data race: a thread may still be reading a value from an index that
another thread is already writing to. In Descend , the compiler recognizes the possibility of a data
race and would reject the program with an error message:

Descend

1 error: conflicting memory access

2 | arr[[thread]] = arr.rev[[thread]];

3 | ^^^^^^^^^^^^^^^^^-------------------

4 | ^^^^^^^^^^^^^ cannot select memory because of a conflicting prior selection here

We will explain in Section 3, that for this check Descend performs an extended borrow (or access)

checking similar to Rust, tracing which memory location (formalized as place expressions) is accessed
by which thread (formalized as execution resources). To make this check feasible, in Descend parallel
memory accesses are performed via views, which are safe parallel access patterns, such as rev for
reverse in this example. Views can be composed to enable complex parallel access patterns that are
still known to be safe.

Synchronization. To avoid data races, CUDA provides various forms of barriers. Originally, CUDA
provided only barriers for synchronizing threads within the same warp or block. We will focus
on modelling these barriers in this paper. More recent versions of CUDA have added support for
grid-wide and partial barriers and the underlying GPU supports even more sophisticated barriers,
such as named and producer-consumer barriers [Bauer et al. 2014]. To avoid unde�ned behavior,
when using a barrier, each participating thread must reach that barrier. Unfortunately, it is easy to
violate this requirement, such as for this block-wide barrier:

CUDA

__global__ kernel(...) { if (threadIdx.x < 32) { __syncthreads() } }

In this CUDA kernel, the __syncthreads barrier is executed only by threads that have an index
smaller than 32 within each block. When launched with more than 32 threads per block, the
behavior of the program is unde�ned. In Descend , a program such as this would not compile, if
there are more than 32 threads per block, failing with an error message:

Descend

1 error: barrier not allowed here

2 | first_32_threads => { sync }

3 | ^^^^ `sync` not performed by all threads in the block ------

4 | split(X) block at 32 {

5 | ^^^^^^^^^^^^^^^^^^^^ `block` is split here

We will discuss in Section 3, how the compiler checks that synchronizations are performed
correctly. In Descend , either all threads in a block perform the same instructions (when using the
sched syntax seen before), or the threads in a block must be split using the syntax shown in the
error message above. A synchronization performed on a split block or a conditional is forbidden.
Descend also ensures that synchronizations are not forgotten. A synchronizations releases borrows
of the synchronized memories which, if forgotten, are �agged by the borrow checker as seen above.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:6 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

2.3 Challenges of Heterogeneity

GPUs are not programmed only by writing kernels. They are part of a heterogeneous system,
with the CPU and GPU performing computations asynchronously and the CPU managing the
computations on the GPU. Two signi�cant challenges arise from this: the handling of the physically
separated memories on CPU and GPU, and dealing with shared assumptions between CPU and GPU
that are often not explicitly encoded and can break correctness in subtle ways.

Separated Memories. The CPU and GPU are physically distinct devices with separate memories.
Data can either be transferred explicitly or implicitly between these memories. To enable implicit
data transfers, CUDA 6 introduced CUDA Uni�ed Memory that uni�es the virtual address spaces
of CPU and GPU pointers. Multiple studies have investigated the performance of CUDA Uni�ed
Memory [Knap and Czarnul 2019; Landaverde et al. 2014; Li et al. 2015] and found that it can result
in performance overheads (and sometimes performance bene�ts) depending on the application’s
memory access patterns. Controlling data transfers explicitly remains an important and widely
used method until today. We are focusing on modelling explicit memory transfers in this paper,
adding implicit memory transfers to Descend is left for future work.
When transferring data between the CPU and GPU explicitly, a host thread that is running on

the CPU uses an API to initiate the memory transfer. The host program only accesses CPU memory,
while a GPU program only accesses its various GPU memories. Programmers are responsible
for keeping track of which pointers point into the CPU or GPU memory. This makes it easy for
programmers to make mistakes that are not caught by the compiler, such as misusing the provided
API for copying data to the GPU:

CUDA

cudaMemcpy(d_vec, h_vec, size, cudaMemcpyDeviceToHost);

Function cudaMemcpy copies size many bytes to the destination in the �rst argument from the
source in the second argument. The last argument speci�es whether the destination and source
are on the device or host. In the above call, destination and source pointers are swapped, which
leads to the address in the host pointer being used to access memory on the device, with unde�ned
behavior. In Descend , reference types carry additional information and correct usage is strictly
enforced. Making the same mistake as above, leads to a compile-time error message:

Descend

1 error: mismatched types

2 | copy_mem_to_host(d_vec, h_vec);

3 | ^^^^^ expected reference to `gpu.global`, found reference to `cpu.mem`

In CUDA, without using Uni�ed Memory, special allocation APIs, or a CUDA-aware allocator in
the operating system, it is possible to allocate memory in CPU memory and pass the CPU pointer
to the GPU. The GPU kernel may then accidentally attempt to access CPU memory directly, as in
the following code:

CUDA

1 void host_fun() { double *vec = malloc(sizeof(double) * N * N); init_kernel<<<N, N>>>(vec); }

2 __global__ void init_kernel(double *vec) { vec[globalIdx.x] = 1.0; }

In this example, the host allocates space for an array in the CPU main memory and passes the
resulting pointer to the GPU. The GPU program then attempts to initialize the memory, but it has
no access to the separated main memory, leading to unde�ned behavior. With full support of CUDA
Uni�ed Memory, this program is well-de�ned, as the GPU would directly access the CPU main

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:7

memory, resulting in an implicit memory transfer. In the initial version of Descend , a program such
as this would be rejected by the compiler because it recognizes that we are attempting to access
CPU memory on the GPU. The equivalent Descend program fails like this:

Descend

1 error: cannot dereference `*vec` pointing to `cpu.mem`

2 | (*vec)[[thread]] = 1.0

3 | ^^^^ dereferencing pointer in `cpu.mem' memory --------------------

4 | sched(X) thread in grid.to_threads {

5 | ^^^^^^ executed by `gpu.Thread`

In Section 3, we introduce execution resources that identify who executes a piece of code with a
focus on the GPU. However, these also extend to CPU threads. The formal type system, introduced
in Section 4, extends references with memory annotations that strictly enforce that memory is only
dereferenced in the correct execution context.

Shared Assumptions between CPU and GPU. In CUDA—and Descend—when launching a function
on the GPU, the host thread speci�es the launch con�guration, i.e., the number of threads executing
the kernel and their grouping into blocks. For GPU functions, there are often implicit assumptions
about the number of threads that are going to execute the function as well as the amount of memory
that is allocated via the host’s memory API. But these assumptions are easily violated on either the
CPU or GPU side, such as for this GPU function scaling a vector:

CUDA

__global__ scale_vec_kernel(double *vec) { vec[globalIdx.x] = vec[globalIdx.x] * 3.0; }

Each GPU thread accesses a single element of the vector at its index within the entire grid. The
assumption made here, is that the grid contains as many threads as there are elements in the vector.
For example, the following launch of the GPU function from the CPU is erroneous:

CUDA

1 cudaMalloc(&d_ptr, SIZE);

2 ...

3 scale_vec_kernel<<<1, SIZE>>>(d_ptr);

Instead of starting as many threads as there are vector elements, the function is executed by as
many threads as there are bytes in the vector. By launching the GPU function with more threads
than vector elements, out-of-bounds memory accesses are triggered. In Descend , calling a GPU
program with the wrong number of threads leads to an error message at compile time:

Descend

1 error: mismatched types

2 | scale_vec<<<X<1>, X<SIZE>>>>(d_vec);

3 | ^^^^^ expected `[f64; SIZE]`, found `[f64; ELEMS]`

We will see in Section 3, that all functions are annotated with an execution resource describing
how the function expects to be executed. This makes assumptions explicit. The type system,
presented in Section 4, enforces this at compile time.

3 SAFE GPU PROGRAMMING WITH DESCEND

In this section, we discuss the technical mechanism that Descend uses to guarantee memory
safety and produce the error messages seen in the previous section. We �rst give explanations

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:8 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

and intuitions, before we will present the most important aspects of the formal type system of
Descend in Section 4. We start by introducing execution resources, place expressions, and views as
the central ingredients to formally reason about the execution and memory hierarchy, and to check
that parallel memory accesses are performed safely.

3.1 Execution Resources

As shown in the previous section, the correctness of a GPU program often depends on the speci�c
grid of blocks and threads that executes it. Depending on the number of threads that the kernel is
executed with, a memory location may or may not be accessed by multiple threads at the same time,
memory accesses may go out-of-bounds or the kernel may simply not compute a complete result.
Furthermore, some instructions are required to be executed by speci�c sets of threads. For example,
the barrier __syncthreads must be executed by all threads within a block, and the warp-shu�e
instruction __shufl_sync that moves values between threads without using slow global or shared
memory, must be executed by a subset of threads within the same warp.

In traditional GPU languages, the grid is speci�ed when the GPU kernel is executed. The kernel
itself has no static knowledge about the grid and can only dynamically refer to its dimensions or
blocks and threads. In addition, a kernel is often not safe for many possible con�gurations of grids.

To enable reasoning statically about the execution of GPU functions, Descend introduces execu-
tion resources, which represent groupings of blocks and threads. The type system uses execution
resources to track whether values are owned or instructions are executed by the entire grid, speci�c
blocks, warps or individual threads. For this, we need to be able to syntactically compare execution
resources, which is the reason to de�ne them with a formal syntax.

Formal Syntax of Execution Resources. Figure 1 shows the formal grammar of execution resources.
Identi�ers are abstract execution resources. The execution resource cpu.thread represents a single
thread on the CPU. The gpu.grid stores two dimensions 3 that describe the up to three-dimensional
shape of the blocks. The size of a dimension is represented as a natural number [that can either be
a constant, a variable, or simple mathematical expressions over natural numbers. For example, a
two-dimensional grid that consists of 2 × 2 blocks, where each block consist of 4 × 4 threads, is
represented as: gpu.grid⟨xy⟨2, 2⟩, xy⟨4, 4⟩⟩. To refer to all blocks of the grid we write:

gpu.grid⟨xy⟨2, 2⟩, xy⟨4, 4⟩⟩.blocks⟨all; xy⟨[0..2], [0..2]⟩⟩

In case we select everything, we use a simpli�ed notation: 4.blocks = 4.blocks⟨all; xy⟨[..] [..]⟩⟩.
Analogously, we refer to collections of threads or a one-dimensional collection of warps (which

in-turn consist of a one-dimensional collection of threads). Using the conditional selection, we
represent when only a subset of threads (or blocks, or warps) has been selected based on a runtime
condition. This is important when detecting if a synchronization is safe or might lead to a deadlock.

4 F Execution Resources:

~ identi�er

cpu.thread CPU Thread

gpu.grid⟨d, d⟩ GPU Grid

4.blocks⟨2 ; [[..[]3 ⟩ blocks

4.warps⟨2 ; [[..[] ⟩ warps

4.threads⟨2 ; [[..[]3 ⟩ threads

4.forall(3) forall

4 [[..[]3 sub-selection

3 F x | y | z Dim-Selector

d F Dimensions:

xyz⟨[,[, [⟩ 3-dim

xy⟨[,[⟩ | xz⟨[,[⟩ | yz⟨[,[⟩ 2-dim

x⟨[⟩ | y⟨[⟩ | z⟨[⟩ 1-dim

[F Natural Numbers:

= identi�er

[literal

[⊕ [binary operation

2 F cond | all conditional select

Fig. 1. Grammar for Execution Resources and Dimensions

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:9

Using forall, we quantify over a dimension, representing, e.g., a slice of blocks sharing the same
index in one dimension. In a naive matrix-multiplication implementation, each row of blocks
within the grid takes ownership over all the rows of the output matrix for which the block’s
threads compute a result. In order to express this, we need a way of referring to each row of blocks
separately. Each row of blocks is represented by quantifying over the y-dimension of blocks:

gpu.grid⟨xy⟨2, 2⟩, xy⟨4, 4⟩⟩.blocks.forall(y)

Lastly, the sub-selection operator changes the amount of selected sub-execution resources in a
given dimension. This is useful in many scenarios. For example, to perform a reduction in a single
block, some data is accumulated iteratively. With each iteration, the number of threads performing
accumulations is halved. This means that only a subset of threads within the block is active, which
we can represent as: block[0..(4/28)]x where 8 is the iteration index.

With execution resources we have a simple yet powerful formal way of referring to collections of
blocks and threads within a multidimensional grid. Next, we have a look at how execution resources
are managed in Descend .

Scheduling over Execution Resources. In Descend execution resources are not speci�ed freely
anywhere in the program. Instead, users schedule computations over every dimension of the
highest level in the execution hierarchy. In the following example code, we execute a function with
a two-dimensional GPU grid of 2 × 2 blocks, each comprised of 4 × 4 threads.

Descend

1 fn f(...) -[grid: gpu.Grid<XY<2,2>,XY<4,4>>]-> (){

2 sched(Y) blockRow in grid.blocks {

3 sched(X) block in blockRow {

4 split(Y) block.threads at 1 {

5 fstThreadGroup => ...

6 sndThreadGroup => ... } } } }

Here, grid is the execution resource that executes function f. The type annotation in line 1
speci�es the shape of the grid. The body of the function is executed by the function’s execution
resource, so in this case, the entire grid. In line 2, we schedule the nested computation over all
groups of blocks in the grid with the same y-dimension (rows of blocks). For that we specify
the execution resource to schedule over (grid.blocks) and provide an identi�er (blockRow) to
refer to the sub-execution resources. Descend requires scheduling over the outer hierarchy levels
completely before further scheduling computations within the inner levels. This means, that rows
of blocks are not allowed to schedule computations over threads. Instead, a row of blocks must
schedule the following computations over all blocks in the x-dimension. The scheduled identi�er
block is equivalent to execution resource gpu.grid⟨xy⟨2, 2⟩, xy⟨4, 4⟩⟩.forall(y).forall(x). Only
when scheduling computations within a single block are we allowed to refer to the threads in the
block. In line 4, each block splits the collection of its threads into two execution resources at index
1 along the y-dimension. fstThreadGroup contains all threads with a thread index less than 1 in
y-dimension. sndThreadGroup contains the rest. The identi�er fstThreadGroup, is equivalent to
the following execution resource:

gpu.grid⟨xy⟨2, 2⟩, xy⟨4, 4⟩⟩.blocks.forall(y) .forall(x).threads[0..1]y

The execution resources introduced here have three main purposes: 1) they are used to checking
what code is executed on the CPU and GPU; 2) they are used to checking which instructions are
executed by which part of the GPU hierarchy, such as barrier synchronization must be executed
inside a block; 3) they keep track of dimensions and sizes that are used in the code generation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:10 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

? F Place Expressions:

G variable

?.fst | ?.snd projections

∗? dereference

? [[] index

?J4K select

?.E view

E F Views

group::⟨[⟩

take_left::⟨[⟩

take_right::⟨[⟩

transpose

reverse

map(E)

Fig. 2. Grammar for Place Expressions

3.2 Place Expressions and Views

To reason about memory locations and safe memory accesses we de�ne Place Expressions and Views.

Place Expressions. Rust introduces the concept of a place expression as unique names for a memory
object. Aliases are resolved by substituting the referenced place expressions. This allows them to
be compared syntactically in Rust’s type system to ensure that the same memory location is not
(mutably) accessed simultaneously. This guarantees data race freedom.

Figure 2 shows Descend ’s place expressions. The simplest place expression is a variable naming a
region of memory. Projections .fst or .snd are applied to tuples referring to two non-overlapping
regions of memory. The dereference-operator accesses the memory that a reference refers to. Single
elements of an array are accessed by indexing. These place expressions exist in Rust as well.

InDescend , we introduce two additional place expressions: selects and views. The select expression
?J4.forall(3)K distributes the ownership of elements within the array place expression ? over
each sub-execution resource in dimension 3 . This requires the execution resource (e.g., block) to
consists of as many sub-execution resources (e.g., threads) as there are elements in the array. Each
sub-execution resource takes ownership over one element, ensuring a safe concurrent array access.

However, assigning ownership of single array elements to execution resources is very restricting.
In practice, it is often required to take ownership over multiple array elements with a single thread.
Similarly, the �rst element of an array would always be mapped to the �rst sub-execution resource.
We require a way of reshaping which sub-execution resource takes ownership over which elements.
To increase the �exibility of safe parallel memory accesses Descend introduces views.

Views. By applying a view E to an array place expression ? with ?.E , the underlying array is
reshaped. The result of applying a view to an array is a view-array. View-arrays are very similar
to ordinary arrays, but they are not guaranteed to be contiguous in memory. The reason for this
is, that reshaping and reordering is not performed directly in memory. Instead, accesses to the
resulting view-array are being transformed to create the impression of accessing data that has been
reshaped and reordered in memory, while in fact, the original array’s memory is being accessed.
The memory layout of the original array remains the same. When generating code, views are
compiled into indices following a process similar to the one taken in the Lift compiler [Steuwer
et al. 2017] and DPIA [Atkey et al. 2017].
Figure 2 shows the basic views in Descend , which can be combined to express more complex

array accesses. View group combines consecutive array elements into nested arrays of a given
size. This enables assigning ownership of groups of elements to an execution resource by using
the select operator. All groups must have the same size by requiring that the group size perfectly
divides the array size. take_left splits the array into two non-overlapping partial arrays at a given
position and returns its left-hand side, while take_right returns the right-hand side of the split.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:11

Descend

1 for k in [4, 2, 1] {

2 sync(block);

3 split(X) k block.threads {

4 active => sched thread in active {

5 let myBorrow = &uniq

6 (*arr).group::<8/k>[[thread]];

7 (*myBorrow)[8/k-1] =

8 (*myBorrow)[8/k-1]

9 + (*myBorrow)[4/k-1];

10 },

11 inactive => { () }

12 }

13 }

<latexit sha1_base64="EC4p0UyTKuYxOmvaYqz9T9wMK9Y=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzMGPxsTEl24xOgACSDpad9MOvR0d7p7jGbCEVyqN/AW3sALeBtbYIPUql7Vq5dXkeLMWN//8QpLyyura8X10sbm1vZOebfSNjLTFEMqudTdiBjkTGBomeXYVRpJGnHsRKOrP7/zhNowKe7ti8JBShLBYkaJddLd8zAYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sFZ/fQ2qDUbMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUQ+ekU=</latexit>

G1
<latexit sha1_base64="/5tQ+r+e00u2ddCGZNMpVhahhMA=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzPE38aERBcuMTpAAkh62jeTDj3dne4eo5lwBJfqDbyFN/AC3sYW2CC1qlf16uVVpDgz1vd/vMLS8srqWnG9tLG5tb1T3q20jcw0xZBKLnU3IgY5ExhaZjl2lUaSRhw70ejqz+88oTZMinv7onCQkkSwmFFinXT3PGwMyzW/7k9wsEiCGak1i99flevPamtYfus/SpqlKCzlxJgeoalJCeeD3DGi7bjUN2itVCmxFnWuNBM2lpxJcxkTbvBoolA6N7qsxniquAuZQUXoiCTYy2x8MciZUJlFQZ2nnCqyNEKXS/JERq7t2PUI/n+9SNqNenBWP70Nas0TmKII+1CFQwjgHJpwAy0IgUICr/AOH96xF3p972G6WvBmmT2Yg5f8AkWFekY=</latexit>

G2
<latexit sha1_base64="Y967a1Tqagba/l96EqRQ0+Js9AE=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzP+NyYkunCJ0QESQNLTvpl06OnudPcYzYQjuFRv4C28gRfwNrbABqlVvapXL68ixZmxvv/jFRYWl5ZXiqultfWNza3ydqVlZKYphlRyqTsRMciZwNAyy7GjNJI04tiOhld/fvsJtWFS3NsXhf2UJILFjBLrpLvnwfGgXPPr/hh78ySYklqj+P1Vuf6sNgflt96jpFmKwlJOjOkSmpqUcN7PHSPajko9g9ZKlRJrUedKM2FjyZk0lzHhBg/GCqUzo8tqjCeKu5AZVIQOSYLdzMYX/ZwJlVkU1HnKqSJLI3S5JE9k5NqOXI/g/9fzpHVUD87qp7dBrXECExRhF6qwDwGcQwNuoAkhUEjgFd7hwzv0Qq/nPUxWC940swMz8JJfRsx6Rw==</latexit>

G3
<latexit sha1_base64="J2EF6axB/BOD4XUunmr1PDEkuBw=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzMGPxsTEl24xOgACSDpad9MOvR0d7p7jGbCEVyqN/AW3sALeBtbYIPUql7Vq5dXkeLMWN//8QpLyyura8X10sbm1vZOebfSNjLTFEMqudTdiBjkTGBomeXYVRpJGnHsRKOrP7/zhNowKe7ti8JBShLBYkaJddLd87AxLNf8uj/BwSIJZqTWLH5/Va4/q61h+a3/KGmWorCUE2N6hKYmJZwPcseItuNS36C1UqXEWtS50kzYWHImzWVMuMGjiULp3OiyGuOp4i5kBhWhI5JgL7PxxSBnQmUWBXWecqrI0ghdLskTGbm2Y9cj+P/1Immf1IOz+ultUGs2YIoi7EMVDiGAc2jCDbQgBAoJvMI7fHjHXuj1vYfpasGbZfZgDl7yC0gTekg=</latexit>

G4
<latexit sha1_base64="z+i2KsXhZ5LFr2rnbibvEP/Orag=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNG1I0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sFZvXEb1JqnMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUlaekk=</latexit>

G5
<latexit sha1_base64="NdbymQ0Cg3JH465TatpT1yaRfEQ=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNG0Y0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6kGjfnYb1JqnMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUqheko=</latexit>

G6
<latexit sha1_base64="6brx/fZ8RBGjtJcTsNFPbGY1MnQ=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNGxY0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sF5/ew2qDVPYYoi7EMVDiGABjThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUvoeks=</latexit>

G7
<latexit sha1_base64="aFpz2Cx5Yq3IZPLO7MdVHbHm8yA=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzPGDxsTEl24xOgACSDpad9MOvR0d7p7jGbCEVyqN/AW3sALeBtbYIPUql7Vq5dXkeLMWN//8QpLyyura8X10sbm1vZOebfSNjLTFEMqudTdiBjkTGBomeXYVRpJGnHsRKOrP7/zhNowKe7ti8JBShLBYkaJddLd87AxLNf8uj/BwSIJZqTWLH5/Va4/q61h+a3/KGmWorCUE2N6hKYmJZwPcseItuNS36C1UqXEWtS50kzYWHImzWVMuMGjiULp3OiyGuOp4i5kBhWhI5JgL7NxY5AzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sF5/ew2qDVPYYoi7EMVDiGAC2jCDbQgBAoJvMI7fHjHXuj1vYfpasGbZfZgDl7yC00vekw=</latexit>

G8

<latexit sha1_base64="gNvDXe60iHRxip4Z8PTAH8rvzjE=">AAABsHicZU/LSgNBEOz1GeMr6tGLmIsHCbvB1yUYUMRjBPOAJITZsXeZZF7MzAqy5B+8eNDP8G/8Ew8eHJNcYupUXdXVdMWaM+vC8CtYWl5ZXVsvbBQ3t7Z3dkt7+y2rMkOxSRVXphMTi5xJbDrmOHa0QSJiju14dPPnt5/RWKbko3vR2BcklSxhlDgvtXpK88wOSuWwEk5wtEiiGSlf/9zW7j5H341B6a33pGgmUDrKibVdQoUVhPN+7hkxblzsWXROaUGcQ5Nrw6RLFGfK1hLCLZ5OFErnRp81mEwVfyGzqAkdkRS7mUuu+jmTOnMoqfe0V2UmYvS5NE9V7AuPfY/o/9eLpFWtRBeV84ewXD+DKQpwCMdwAhFcQh3uoQFNoDCEV3iHj6AadIJBQKarS8EscwBzCIa/8G99EQ==</latexit>

⊕
<latexit sha1_base64="gNvDXe60iHRxip4Z8PTAH8rvzjE=">AAABsHicZU/LSgNBEOz1GeMr6tGLmIsHCbvB1yUYUMRjBPOAJITZsXeZZF7MzAqy5B+8eNDP8G/8Ew8eHJNcYupUXdXVdMWaM+vC8CtYWl5ZXVsvbBQ3t7Z3dkt7+y2rMkOxSRVXphMTi5xJbDrmOHa0QSJiju14dPPnt5/RWKbko3vR2BcklSxhlDgvtXpK88wOSuWwEk5wtEiiGSlf/9zW7j5H341B6a33pGgmUDrKibVdQoUVhPN+7hkxblzsWXROaUGcQ5Nrw6RLFGfK1hLCLZ5OFErnRp81mEwVfyGzqAkdkRS7mUuu+jmTOnMoqfe0V2UmYvS5NE9V7AuPfY/o/9eLpFWtRBeV84ewXD+DKQpwCMdwAhFcQh3uoQFNoDCEV3iHj6AadIJBQKarS8EscwBzCIa/8G99EQ==</latexit>

⊕
<latexit sha1_base64="gNvDXe60iHRxip4Z8PTAH8rvzjE=">AAABsHicZU/LSgNBEOz1GeMr6tGLmIsHCbvB1yUYUMRjBPOAJITZsXeZZF7MzAqy5B+8eNDP8G/8Ew8eHJNcYupUXdXVdMWaM+vC8CtYWl5ZXVsvbBQ3t7Z3dkt7+y2rMkOxSRVXphMTi5xJbDrmOHa0QSJiju14dPPnt5/RWKbko3vR2BcklSxhlDgvtXpK88wOSuWwEk5wtEiiGSlf/9zW7j5H341B6a33pGgmUDrKibVdQoUVhPN+7hkxblzsWXROaUGcQ5Nrw6RLFGfK1hLCLZ5OFErnRp81mEwVfyGzqAkdkRS7mUuu+jmTOnMoqfe0V2UmYvS5NE9V7AuPfY/o/9eLpFWtRBeV84ewXD+DKQpwCMdwAhFcQh3uoQFNoDCEV3iHj6AadIJBQKarS8EscwBzCIa/8G99EQ==</latexit>

⊕
<latexit sha1_base64="gNvDXe60iHRxip4Z8PTAH8rvzjE=">AAABsHicZU/LSgNBEOz1GeMr6tGLmIsHCbvB1yUYUMRjBPOAJITZsXeZZF7MzAqy5B+8eNDP8G/8Ew8eHJNcYupUXdXVdMWaM+vC8CtYWl5ZXVsvbBQ3t7Z3dkt7+y2rMkOxSRVXphMTi5xJbDrmOHa0QSJiju14dPPnt5/RWKbko3vR2BcklSxhlDgvtXpK88wOSuWwEk5wtEiiGSlf/9zW7j5H341B6a33pGgmUDrKibVdQoUVhPN+7hkxblzsWXROaUGcQ5Nrw6RLFGfK1hLCLZ5OFErnRp81mEwVfyGzqAkdkRS7mUuu+jmTOnMoqfe0V2UmYvS5NE9V7AuPfY/o/9eLpFWtRBeV84ewXD+DKQpwCMdwAhFcQh3uoQFNoDCEV3iHj6AadIJBQKarS8EscwBzCIa/8G99EQ==</latexit>

⊕

<latexit sha1_base64="EC4p0UyTKuYxOmvaYqz9T9wMK9Y=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzMGPxsTEl24xOgACSDpad9MOvR0d7p7jGbCEVyqN/AW3sALeBtbYIPUql7Vq5dXkeLMWN//8QpLyyura8X10sbm1vZOebfSNjLTFEMqudTdiBjkTGBomeXYVRpJGnHsRKOrP7/zhNowKe7ti8JBShLBYkaJddLd8zAYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sFZ/fQ2qDUbMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUQ+ekU=</latexit>

G1
<latexit sha1_base64="Y967a1Tqagba/l96EqRQ0+Js9AE=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzP+NyYkunCJ0QESQNLTvpl06OnudPcYzYQjuFRv4C28gRfwNrbABqlVvapXL68ixZmxvv/jFRYWl5ZXiqultfWNza3ydqVlZKYphlRyqTsRMciZwNAyy7GjNJI04tiOhld/fvsJtWFS3NsXhf2UJILFjBLrpLvnwfGgXPPr/hh78ySYklqj+P1Vuf6sNgflt96jpFmKwlJOjOkSmpqUcN7PHSPajko9g9ZKlRJrUedKM2FjyZk0lzHhBg/GCqUzo8tqjCeKu5AZVIQOSYLdzMYX/ZwJlVkU1HnKqSJLI3S5JE9k5NqOXI/g/9fzpHVUD87qp7dBrXECExRhF6qwDwGcQwNuoAkhUEjgFd7hwzv0Qq/nPUxWC940swMz8JJfRsx6Rw==</latexit>

G3
<latexit sha1_base64="z+i2KsXhZ5LFr2rnbibvEP/Orag=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNG1I0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sFZvXEb1JqnMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUlaekk=</latexit>

G5
<latexit sha1_base64="6brx/fZ8RBGjtJcTsNFPbGY1MnQ=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNGxY0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sF5/ew2qDVPYYoi7EMVDiGABjThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUvoeks=</latexit>

G7

<latexit sha1_base64="mG2Y6awJlGPk73AMcTPk/fFgaR8=">AAAB1nicZVBNS8NAEN3Ur1o/GvXowWJBRCQk1aoXodCLvVWwH9CEsNlOwtLdbMhupBLqTbz24l/xqn/Df+Pa9lL7DsObN/OGmQkSRqWy7R+jsLa+sblV3C7t7O7tl82Dw64UWUqgQwQTaT/AEhiNoaOoYtBPUsA8YNALRs2/eu8ZUklF/KReEvA4jmIaUoKVlnzzwpUZr+gQSIXJKB/7jutWXDYUSrruwKrVgXuVsV+blHyzalv2DJVV4ixItXF21Sy3Widt3/xwh4JkHGJFGJZygAmXHDPm5ZrhVE1KrgSlRMKxUpDmSUpjFQpGhbwPMZNwOVMIWUq1N4VwrugJmYREb44jGGQqvPNyGieZgpjoWqLVOOMBaF+URyLQb5noO5z/W6+Sbs1ybqz6oz7oGs1RRMfoFJ0jB92iBnpAbdRBBE3RJ/pC30bfeDXejPd5a8FYeI7QEozpL+WNiJE=</latexit>’
G1
...

G2

<latexit sha1_base64="Ux80SVdO7YUx5AYd1A7bEf86vjc=">AAAB1nicZVBLS8NAEN7UV62PVj16MFgQEQlJH+pFKPRibxXsA5oQNttJWbqbDdmNVEK9idde/Cte9W/4b1zbXmq/w/DNN/MNMxPEjEpl2z9GbmNza3snv1vY2z84LJaOjrtSpAmBDhFMJP0AS2A0go6iikE/TgDzgEEvGDf/6r1nSCQV0ZN6icHjeBTRkBKstOSXrlyZclOHQCpMxtnEr7qu6bKhUNJ1B1alDtwzJ35tWvBLZduy5zDXibMk5cZFtVlstc7afunDHQqScogUYVjKASZccsyYl2mGEzUtuBKUEjHHSkGSxQmNVCgYFfI+xEzC9VwhZCXV3gTChaInpBJivTkewSBV4Z2X0ShOFURE12KtRikPQPtG2UgE+i1TfYfzf+t10q1Yzo1Vf9QH1dACeXSKztElctAtaqAH1EYdRNAMfaIv9G30jVfjzXhftOaMpecErcCY/QLq3YiV</latexit>’
G3
...

G4

<latexit sha1_base64="e1yfWln1+HNhpIEvvMZiluA73bk=">AAAB1nicZVBNS8NAEN34WetHox49WCyIiISk2upFKPRibxXsBzQhbLaTsHQ3G7IbqYR6E6+9+Fe86t/w37i2vdS+w/DmzbxhZoKEUals+8dYW9/Y3Nou7BR39/YPSubhUVeKLCXQIYKJtB9gCYzG0FFUMegnKWAeMOgFo+ZfvfcMqaQiflIvCXgcRzENKcFKS7556cqMl3UIpMJklI/9muuWXTYUSrruwKrWgHvlsV+fFH2zYlv2DOVV4ixIpXF+3Sy1Wqdt3/xwh4JkHGJFGJZygAmXHDPm5ZrhVE2KrgSlRMKxUpDmSUpjFQpGhbwPMZNwNVMIWUq1N4VwrugJmYREb44jGGQqvPNyGieZgpjoWqLVOOMBaF+URyLQb5noO5z/W6+SbtVy6lbtUR90g+YooBN0hi6Qg25RAz2gNuoggqboE32hb6NvvBpvxvu8dc1YeI7REozpL/AtiJk=</latexit>’
G5
...

G6

<latexit sha1_base64="3V6ZFyhg5FKoLy7yefTNxly9ZPI=">AAAB1nicZVBNT8JAEN3iF+IHqEcPEkmMMaahKMLFhISL3DCRj4Rtmu0yJRt2u013azAN3oxXLv4Vr/o3/DeuwAV5h8mbN/MmM+NHnCldLv9YmY3Nre2d7G5ub//gMF84Ou4qmcQUOlRyGfd9ooCzEDqaaQ79KAYifA49f9z8q/eeIVZMhk/6JQJXkFHIAkaJNpJXuMIqEUUTfKUJHacTr4ZxEfOh1ArjgV2pgnCLE68+zXmFUtkuz1FcJ86SlBoXN818q3XW9gofeChpIiDUlBOlBoQKJQjnbmoYifU0hxVoLSNBtIY4jWIW6kByJtV9QLiC67lC6UpqvDEEC8VMSBREZnMygkGig7qbsjBKNITU1CKjhonwwfhG6Uj65i1Tc4fzf+t10q3Yzp1dfTQH3aIFsugUnaNL5KAaaqAH1EYdRNEMfaIv9G31rVfrzXpftGaspecErcCa/QL1fYid</latexit>’
G7
...

G8

<latexit sha1_base64="gNvDXe60iHRxip4Z8PTAH8rvzjE=">AAABsHicZU/LSgNBEOz1GeMr6tGLmIsHCbvB1yUYUMRjBPOAJITZsXeZZF7MzAqy5B+8eNDP8G/8Ew8eHJNcYupUXdXVdMWaM+vC8CtYWl5ZXVsvbBQ3t7Z3dkt7+y2rMkOxSRVXphMTi5xJbDrmOHa0QSJiju14dPPnt5/RWKbko3vR2BcklSxhlDgvtXpK88wOSuWwEk5wtEiiGSlf/9zW7j5H341B6a33pGgmUDrKibVdQoUVhPN+7hkxblzsWXROaUGcQ5Nrw6RLFGfK1hLCLZ5OFErnRp81mEwVfyGzqAkdkRS7mUuu+jmTOnMoqfe0V2UmYvS5NE9V7AuPfY/o/9eLpFWtRBeV84ewXD+DKQpwCMdwAhFcQh3uoQFNoDCEV3iHj6AadIJBQKarS8EscwBzCIa/8G99EQ==</latexit>

⊕
<latexit sha1_base64="gNvDXe60iHRxip4Z8PTAH8rvzjE=">AAABsHicZU/LSgNBEOz1GeMr6tGLmIsHCbvB1yUYUMRjBPOAJITZsXeZZF7MzAqy5B+8eNDP8G/8Ew8eHJNcYupUXdXVdMWaM+vC8CtYWl5ZXVsvbBQ3t7Z3dkt7+y2rMkOxSRVXphMTi5xJbDrmOHa0QSJiju14dPPnt5/RWKbko3vR2BcklSxhlDgvtXpK88wOSuWwEk5wtEiiGSlf/9zW7j5H341B6a33pGgmUDrKibVdQoUVhPN+7hkxblzsWXROaUGcQ5Nrw6RLFGfK1hLCLZ5OFErnRp81mEwVfyGzqAkdkRS7mUuu+jmTOnMoqfe0V2UmYvS5NE9V7AuPfY/o/9eLpFWtRBeV84ewXD+DKQpwCMdwAhFcQh3uoQFNoDCEV3iHj6AadIJBQKarS8EscwBzCIa/8G99EQ==</latexit>

⊕

<latexit sha1_base64="EC4p0UyTKuYxOmvaYqz9T9wMK9Y=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzMGPxsTEl24xOgACSDpad9MOvR0d7p7jGbCEVyqN/AW3sALeBtbYIPUql7Vq5dXkeLMWN//8QpLyyura8X10sbm1vZOebfSNjLTFEMqudTdiBjkTGBomeXYVRpJGnHsRKOrP7/zhNowKe7ti8JBShLBYkaJddLd8zAYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sFZ/fQ2qDUbMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUQ+ekU=</latexit>

G1
<latexit sha1_base64="Y967a1Tqagba/l96EqRQ0+Js9AE=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzP+NyYkunCJ0QESQNLTvpl06OnudPcYzYQjuFRv4C28gRfwNrbABqlVvapXL68ixZmxvv/jFRYWl5ZXiqultfWNza3ydqVlZKYphlRyqTsRMciZwNAyy7GjNJI04tiOhld/fvsJtWFS3NsXhf2UJILFjBLrpLvnwfGgXPPr/hh78ySYklqj+P1Vuf6sNgflt96jpFmKwlJOjOkSmpqUcN7PHSPajko9g9ZKlRJrUedKM2FjyZk0lzHhBg/GCqUzo8tqjCeKu5AZVIQOSYLdzMYX/ZwJlVkU1HnKqSJLI3S5JE9k5NqOXI/g/9fzpHVUD87qp7dBrXECExRhF6qwDwGcQwNuoAkhUEjgFd7hwzv0Qq/nPUxWC940swMz8JJfRsx6Rw==</latexit>

G3
<latexit sha1_base64="z+i2KsXhZ5LFr2rnbibvEP/Orag=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNG1I0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sFZvXEb1JqnMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUlaekk=</latexit>

G5
<latexit sha1_base64="6brx/fZ8RBGjtJcTsNFPbGY1MnQ=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNGxY0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sF5/ew2qDVPYYoi7EMVDiGABjThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUvoeks=</latexit>

G7

<latexit sha1_base64="mG2Y6awJlGPk73AMcTPk/fFgaR8=">AAAB1nicZVBNS8NAEN3Ur1o/GvXowWJBRCQk1aoXodCLvVWwH9CEsNlOwtLdbMhupBLqTbz24l/xqn/Df+Pa9lL7DsObN/OGmQkSRqWy7R+jsLa+sblV3C7t7O7tl82Dw64UWUqgQwQTaT/AEhiNoaOoYtBPUsA8YNALRs2/eu8ZUklF/KReEvA4jmIaUoKVlnzzwpUZr+gQSIXJKB/7jutWXDYUSrruwKrVgXuVsV+blHyzalv2DJVV4ixItXF21Sy3Widt3/xwh4JkHGJFGJZygAmXHDPm5ZrhVE1KrgSlRMKxUpDmSUpjFQpGhbwPMZNwOVMIWUq1N4VwrugJmYREb44jGGQqvPNyGieZgpjoWqLVOOMBaF+URyLQb5noO5z/W6+Sbs1ybqz6oz7oGs1RRMfoFJ0jB92iBnpAbdRBBE3RJ/pC30bfeDXejPd5a8FYeI7QEozpL+WNiJE=</latexit>’
G1
...

G2

<latexit sha1_base64="e1yfWln1+HNhpIEvvMZiluA73bk=">AAAB1nicZVBNS8NAEN34WetHox49WCyIiISk2upFKPRibxXsBzQhbLaTsHQ3G7IbqYR6E6+9+Fe86t/w37i2vdS+w/DmzbxhZoKEUals+8dYW9/Y3Nou7BR39/YPSubhUVeKLCXQIYKJtB9gCYzG0FFUMegnKWAeMOgFo+ZfvfcMqaQiflIvCXgcRzENKcFKS7556cqMl3UIpMJklI/9muuWXTYUSrruwKrWgHvlsV+fFH2zYlv2DOVV4ixIpXF+3Sy1Wqdt3/xwh4JkHGJFGJZygAmXHDPm5ZrhVE2KrgSlRMKxUpDmSUpjFQpGhbwPMZNwNVMIWUq1N4VwrugJmYREb44jGGQqvPNyGieZgpjoWqLVOOMBaF+URyLQb5noO5z/W6+SbtVy6lbtUR90g+YooBN0hi6Qg25RAz2gNuoggqboE32hb6NvvBpvxvu8dc1YeI7REozpL/AtiJk=</latexit>’
G5
...

G6

<latexit sha1_base64="r9eycQt7r6eHSjXSDY8sY8sZ2ko=">AAAB1nicZVBNS8NAEN34WetHox49GCyIiISktupFKPRibxXsBzQhbLaTsnQ3G7IbqYR6E6+9+Fe86t/w37i2vdS+w/DmzbxhZsKEUakc58dYW9/Y3Nou7BR39/YPSubhUUeKLCXQJoKJtBdiCYzG0FZUMeglKWAeMuiGo8ZfvfsMqaQiflIvCfgcD2MaUYKVlgLz0pMZt3QIpcJklI8D1/Msjw2Ekp7Xtys14L41DqqTYmCWHduZwVol7oKU6+fXjVKzedoKzA9vIEjGIVaEYSn7mHDJMWN+rhlO1aToSVBKJBwrBWmepDRWkWBUyPsIMwlXM4WQpVR7U4jmip6QSUj05ngI/UxFd35O4yRTEBNdS7QaZzwE7RvmQxHqt0z0He7/rVdJp2K7N3btUR9URXMU0Ak6QxfIRbeojh5QC7URQVP0ib7Qt9EzXo03433eumYsPMdoCcb0F+gfiJM=</latexit>’
G1
...

G4

<latexit sha1_base64="CGmkywqoIVQMtKm0DAG3WWpqCI4=">AAAB1nicZVBNS8NAEN34WetHox49WCyIiISkWu1FKPRibxXsBzQhbLaTsHQ3G7IbqYR6E6+9+Fe86t/w37i2vdS+w/DmzbxhZoKEUals+8dYW9/Y3Nou7BR39/YPSubhUVeKLCXQIYKJtB9gCYzG0FFUMegnKWAeMOgFo+ZfvfcMqaQiflIvCXgcRzENKcFKS7556cqMl3UIpMJklI/9muuWXTYUSrruwKrWgHvlsV+fFH2zYlv2DOVV4ixIpXF+3Sy1Wqdt3/xwh4JkHGJFGJZygAmXHDPm5ZrhVE2KrgSlRMKxUpDmSUpjFQpGhbwPMZNwNVMIWUq1N4VwrugJmYREb44jGGQqrHs5jZNMQUx0LdFqnPEAtC/KIxHot0z0Hc7/rVdJt2o5t1btUR90g+YooBN0hi6Qg+5QAz2gNuoggqboE32hb6NvvBpvxvu8dc1YeI7REozpL/K/iJs=</latexit>’
G5
...

G8

<latexit sha1_base64="gNvDXe60iHRxip4Z8PTAH8rvzjE=">AAABsHicZU/LSgNBEOz1GeMr6tGLmIsHCbvB1yUYUMRjBPOAJITZsXeZZF7MzAqy5B+8eNDP8G/8Ew8eHJNcYupUXdXVdMWaM+vC8CtYWl5ZXVsvbBQ3t7Z3dkt7+y2rMkOxSRVXphMTi5xJbDrmOHa0QSJiju14dPPnt5/RWKbko3vR2BcklSxhlDgvtXpK88wOSuWwEk5wtEiiGSlf/9zW7j5H341B6a33pGgmUDrKibVdQoUVhPN+7hkxblzsWXROaUGcQ5Nrw6RLFGfK1hLCLZ5OFErnRp81mEwVfyGzqAkdkRS7mUuu+jmTOnMoqfe0V2UmYvS5NE9V7AuPfY/o/9eLpFWtRBeV84ewXD+DKQpwCMdwAhFcQh3uoQFNoDCEV3iHj6AadIJBQKarS8EscwBzCIa/8G99EQ==</latexit>

⊕

<latexit sha1_base64="EC4p0UyTKuYxOmvaYqz9T9wMK9Y=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzMGPxsTEl24xOgACSDpad9MOvR0d7p7jGbCEVyqN/AW3sALeBtbYIPUql7Vq5dXkeLMWN//8QpLyyura8X10sbm1vZOebfSNjLTFEMqudTdiBjkTGBomeXYVRpJGnHsRKOrP7/zhNowKe7ti8JBShLBYkaJddLd8zAYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sFZ/fQ2qDUbMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUQ+ekU=</latexit>

G1
<latexit sha1_base64="Y967a1Tqagba/l96EqRQ0+Js9AE=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzP+NyYkunCJ0QESQNLTvpl06OnudPcYzYQjuFRv4C28gRfwNrbABqlVvapXL68ixZmxvv/jFRYWl5ZXiqultfWNza3ydqVlZKYphlRyqTsRMciZwNAyy7GjNJI04tiOhld/fvsJtWFS3NsXhf2UJILFjBLrpLvnwfGgXPPr/hh78ySYklqj+P1Vuf6sNgflt96jpFmKwlJOjOkSmpqUcN7PHSPajko9g9ZKlRJrUedKM2FjyZk0lzHhBg/GCqUzo8tqjCeKu5AZVIQOSYLdzMYX/ZwJlVkU1HnKqSJLI3S5JE9k5NqOXI/g/9fzpHVUD87qp7dBrXECExRhF6qwDwGcQwNuoAkhUEjgFd7hwzv0Qq/nPUxWC940swMz8JJfRsx6Rw==</latexit>

G3
<latexit sha1_base64="z+i2KsXhZ5LFr2rnbibvEP/Orag=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNG1I0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sFZvXEb1JqnMEUR9qEKhxDAOTThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUlaekk=</latexit>

G5
<latexit sha1_base64="6brx/fZ8RBGjtJcTsNFPbGY1MnQ=">AAABrXicZU9LTgJBFHyDP8Qf4tKNgY0LgzNGxY0JiS5cYnSABJD0tG8mHXq6O909RjPhCC7VG3gLb+AFvI0tsEFqVa/q1curSHFmrO//eIWl5ZXVteJ6aWNza3unvFtpG5lpiiGVXOpuRAxyJjC0zHLsKo0kjTh2otHVn995Qm2YFPf2ReEgJYlgMaPEOunuedgYlmt+3Z/gYJEEM1JrFr+/Ktef1daw/NZ/lDRLUVjKiTE9QlOTEs4HuWNE23Gpb9BaqVJiLepcaSZsLDmT5jIm3ODRRKF0bnRZjfFUcRcyg4rQEUmwl9n4YpAzoTKLgjpPOVVkaYQul+SJjFzbsesR/P96kbRP6sF5/ew2qDVPYYoi7EMVDiGABjThBloQAoUEXuEdPrxjL/T63sN0teDNMnswBy/5BUvoeks=</latexit>

G7

<latexit sha1_base64="r9eycQt7r6eHSjXSDY8sY8sZ2ko=">AAAB1nicZVBNS8NAEN34WetHox49GCyIiISktupFKPRibxXsBzQhbLaTsnQ3G7IbqYR6E6+9+Fe86t/w37i2vdS+w/DmzbxhZsKEUakc58dYW9/Y3Nou7BR39/YPSubhUUeKLCXQJoKJtBdiCYzG0FZUMeglKWAeMuiGo8ZfvfsMqaQiflIvCfgcD2MaUYKVlgLz0pMZt3QIpcJklI8D1/Msjw2Ekp7Xtys14L41DqqTYmCWHduZwVol7oKU6+fXjVKzedoKzA9vIEjGIVaEYSn7mHDJMWN+rhlO1aToSVBKJBwrBWmepDRWkWBUyPsIMwlXM4WQpVR7U4jmip6QSUj05ngI/UxFd35O4yRTEBNdS7QaZzwE7RvmQxHqt0z0He7/rVdJp2K7N3btUR9URXMU0Ak6QxfIRbeojh5QC7URQVP0ib7Qt9EzXo03433eumYsPMdoCcb0F+gfiJM=</latexit>’
G1
...

G4

<latexit sha1_base64="ulgQT/0n/NWQNCy6CSGkP0NVTmY=">AAAB1nicZVBNS8NAEN34WetHox49GCyIiISkWu1FKPRibxXsBzQhbLaTsnQ3G7IbqYR6E6+9+Fe86t/w37i2vdS+w/DmzbxhZsKEUakc58dYW9/Y3Nou7BR39/YPSubhUUeKLCXQJoKJtBdiCYzG0FZUMeglKWAeMuiGo8ZfvfsMqaQiflIvCfgcD2MaUYKVlgLz0pMZt3QIpcJklI8D1/Msjw2Ekp7XtytV4L41DmqTYmCWHduZwVol7oKU6+fXjVKzedoKzA9vIEjGIVaEYSn7mHDJMWN+rhlO1aToSVBKJBwrBWmepDRWkWBUyPsIMwlXM4WQpVR7U4jmip6QSUj05ngI/UxFNT+ncZIpiImuJVqNMx6C9g3zoQj1Wyb6Dvf/1qukU7HdW7v6qA+6QXMU0Ak6QxfIRXeojh5QC7URQVP0ib7Qt9EzXo03433eumYsPMdoCcb0F+1DiJc=</latexit>’
G1
...

G8

<latexit sha1_base64="mG2Y6awJlGPk73AMcTPk/fFgaR8=">AAAB1nicZVBNS8NAEN3Ur1o/GvXowWJBRCQk1aoXodCLvVWwH9CEsNlOwtLdbMhupBLqTbz24l/xqn/Df+Pa9lL7DsObN/OGmQkSRqWy7R+jsLa+sblV3C7t7O7tl82Dw64UWUqgQwQTaT/AEhiNoaOoYtBPUsA8YNALRs2/eu8ZUklF/KReEvA4jmIaUoKVlnzzwpUZr+gQSIXJKB/7jutWXDYUSrruwKrVgXuVsV+blHyzalv2DJVV4ixItXF21Sy3Widt3/xwh4JkHGJFGJZygAmXHDPm5ZrhVE1KrgSlRMKxUpDmSUpjFQpGhbwPMZNwOVMIWUq1N4VwrugJmYREb44jGGQqvPNyGieZgpjoWqLVOOMBaF+URyLQb5noO5z/W6+Sbs1ybqz6oz7oGs1RRMfoFJ0jB92iBnpAbdRBBE3RJ/pC30bfeDXejPd5a8FYeI7QEozpL+WNiJE=</latexit>’
G1
...

G2

<latexit sha1_base64="e1yfWln1+HNhpIEvvMZiluA73bk=">AAAB1nicZVBNS8NAEN34WetHox49WCyIiISk2upFKPRibxXsBzQhbLaTsHQ3G7IbqYR6E6+9+Fe86t/w37i2vdS+w/DmzbxhZoKEUals+8dYW9/Y3Nou7BR39/YPSubhUVeKLCXQIYKJtB9gCYzG0FFUMegnKWAeMOgFo+ZfvfcMqaQiflIvCXgcRzENKcFKS7556cqMl3UIpMJklI/9muuWXTYUSrruwKrWgHvlsV+fFH2zYlv2DOVV4ixIpXF+3Sy1Wqdt3/xwh4JkHGJFGJZygAmXHDPm5ZrhVE2KrgSlRMKxUpDmSUpjFQpGhbwPMZNwNVMIWUq1N4VwrugJmYREb44jGGQqvPNyGieZgpjoWqLVOOMBaF+URyLQb5noO5z/W6+SbtVy6lbtUR90g+YooBN0hi6Qg25RAz2gNuoggqboE32hb6NvvBpvxvu8dc1YeI7REozpL/AtiJk=</latexit>’
G5
...

G6

k = 4

k = 2

k = 1

Threads:

Threads:

Threads:

Fig. 3. Data owned by threads during the upsweep phase of scan algorithm.

We ensure that the position of the split is within the size of the input array. These views enable
programmers to select only a part of an array to work on and do something else with the other
part or discard it. View transpose transposes a two-dimensional array and reverse reverses the
order of elements. Finally, map applies a view to each element of a multidimensional array.
Figure 3, shows an example of how views are used to control which thread in a block takes

ownership over array elements during the upsweep phase of a work-e�cient block-wide scan
algorithm. The code on the left shows an implementation of the upsweep phase in Descend . The
graphic on the right shows the individual loop iterations from the bottom to the top. The dark
shaded areas show which array elements each thread has access to in each iteration. The arrows
depict the data �ow of the computation showing that each thread only performs reads and writes
within the section of the array they have exclusive access to.

In each iteration, the number of active threads is halved using the split construct in line 3. Each
active thread is assigned a group of elements using the group view in line 6. The size of the group
increases with each iteration. Two elements are added, and the last owned element is overwritten
with the result (lines 7–9). In between each iteration a synchronization is required (line 2) as we
perform the writes to a shared array and change the memory access pattern in each iteration.
This example shows, how views are used to distribute ownership of array elements over many

threads, while guaranteeing that there is a clear separation of elements between execution resources.
We can give this guarantee, because all views either group, remove or permute elements of an array
and select always assigns threads to distinct elements. However, redistributing elements that were
already distributed previously, may still introduce the possibility of multiple execution resources
sharing ownership of elements. In order to guarantee that no memory location can be (mutably)
accessed by more than one thread at the same time, we must guarantee that two place expressions
aren’t aliases for the same memory locations. In Rust, this guarantee is achieved through borrow
checking. In Descend , we have extended borrow checking to guarantee alias freedom between
memory accessed by di�erent execution resources.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:12 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

3.3 Extended borrow checking in Descend

Rust uses ownership, borrowing, and lifetimes to statically guarantee that there are no data races,
memory leaks, use-after-free errors and other memory related errors. Ownership ensures that there
is no aliasing of memory objects, as on assignment to a new variable the value can only be accessed
via the new variable. Attempts to access memory via the old variable lead to compile-time errors.

As ownership alone is too restrictive, with borrowing, a restricted notion of aliasing is reintro-
duced into the language. The borrow checker checks if a thread is allowed to create a (unique or
shared) reference to a memory object, i.e., “borrow” it. Multiple shared references can be used at
the same time, for reading only. A unique reference, guarantees that there are no other ways to
access the same memory location. It is, therefore, safe to mutate the underlying memory.
Finally, lifetimes ensure that the underlying memory of a reference hasn’t been deallocated.

Attempting to dereference when the memory might have been freed results in a compiler error.

Descend’s extended borrow checker. On the CPU, Descend implements the same rules as Rust. On
the GPU side, the ownership, and borrowing rules are extended and diverge from Rust. In Rust,
ownership always belongs to a single thread. In Descend , each execution resource, such as the grid
or a block might take ownership of a memory object or create references, i.e., they might borrow.
This means that collections of blocks or threads, as well as single threads, own and borrow memory
objects, formally represented as place expressions. For a single thread to be able to write into a
memory location by having exclusive access to it, the ownership and borrows must be narrowed
using Descend ’s hierarchical scheduling, selections and views.
Narrowing describes how ownership and borrows are re�ned when navigating the execution

hierarchy from grid, to blocks and threads. For example, the ownership of an array by a grid is
narrowed to the grid’s blocks by the blocks collectively borrowing the array, each block a distinct
part. This might be further narrowed to the block’s threads. But narrowing can be violated:

Descend

1 fn kernel(arr: &uniq gpu.global [f32; 1024]) -[grd: gpu.Grid<X<32>,X<32>>]-> () {

2 sched(X) block in grd {

3 let in_borrow = &uniq *arr; // Narrowing violated

4 sched(X) thread in block {

5 let group = &uniq arr.group::<32>[[thread]]; // Narrowing violated

6 arr.group::<32>[[block]][[thread]]; } } }

In the example, the parameter arr is owned by the grid. Attempting to borrow arr in line 3 after
having scheduled the blocks of the grid violates narrowing, because each block in the grid would
get unique write access to the entire array.

Another narrowing violation is shown in line 5. The array is grouped so that there are as many
groups as threads per block. Then each thread selects a group and borrows that group uniquely.
However, the same selection is performed for each block, because there was no selection for block.
Therefore, threads from di�erent blocks would gain access to the same memory location.

Line 7 shows correct narrowing. The array is grouped, and each block exclusively borrows a
part of the array, before each thread in each block selects an element from it.

Synchronization. Descend ’s narrowing ensures that no two threads have mutable access to the
same memory location. However, sometimes we do want to communicate with another thread via
shared memory and then the other thread must be able to access the same memory location as well.
We, therefore, need a way to allow an subsequent access by another thread while guaranteeing that
this access cannot lead to a data race. By synchronizing threads at a barrier, we get the guarantee
that all memory accesses before the barrier cannot con�ict with memory accesses after the barrier.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:13

3.4 Shared Write Access through Atomics

Up until this point, we have explained how Descend enforces that two threads cannot (mutably)
perform write access to the same memory location. However, this requirement is often too strict.
Some applications, such as histograms, require threads to update memory locations concurrently.
This is achieved without race conditions by using atomic read-modify-write (RMW) operations.

Descend supports a limited form of RMW operations via atomic types that resemble the atomic
types in Rust: RMW operations are performed on values with atomic types that are referred
to by shared references. This allows multiple threads to perform RMW operations through the
same reference, without violating the extended borrow checking rules. For example, operation
atomic_fetch_add_u32 has the following function signature:

Descend

atomic_fetch_add_u32<r:prv, m:mem>(atom_ref:&r shrd m AtomicU32, val:u32) -[t:gpu.Thread]-> u32

The function takes two arguments: a shared reference to a memory location and a value to add
to the memory location. It must be called by a single thread and returns the value stored at the
memory location before performing the RMW.
In the current version of Descend RMW operations are performed with a relaxed memory

ordering, which does not impose constraints on other reads and writes. Implementations that
require a more sophisticated use of atomics must resort to unsafe Descend code, possibly using
inlined CUDA code. In future work, we would like to investigate weak memory models and other
memory orderings such as sequential consistency and acquire-release.

3.5 Escaping Restrictions Using Unsafe

For some algorithms, there is no statically known partitioning of the memory that Descend ’s views
can express. Even when views can be used to express the general access pattern, indices and natural
numbers must be statically guaranteed to be within array bounds or ful�ll constraints such as a
size being dividable by a speci�c number, e.g., the size of a group view must divide the size of
the grouped array. This can be a problem for such algorithms, for example for graph algorithms,
where the nodes are often stored linearly in memory and referred to with an index that is read
from memory or computed at runtime, depending on the shape of the graph.

Descend o�ers programmers a way to escape these restrictions, enabling them to write programs
that would otherwise not be expressible in Descend – at the cost of introducing unsafe blocks
of code. Preceding an expression with unsafe tells the type checker to not perform extended
borrow checking as well as constraint checks. For example, an optimized implementation of the
Single-Source Shortest Path (SSSP) algorithm for GPU, chooses edges to process at runtime. After
choosing the edge, the index of the edge’s destination node dst is read from memory and then the
array node_data containing the data for all the graph’s nodes is accessed as follows:

Descend

unsafe &shrd (*(*graph).node_data)[dst]

Without unsafe the above line would not type check, as dst is not known statically when
checking that the index is within the range of the array. The SSSP implementation uses a highly
optimized worklist to track nodes whose distances must be (re-)computed. To avoid data races on
this worklist while still being e�cient, the implementation utilizes CUDA’s weak memory model.
This use of atomics goes beyond what can currently be expressed in safe Descend . Using unsafe

we can write inline CUDA code to call directly into the existing worklist CUDA library. Unsafe
code lacks the strong safety guarantees and must be used with caution, but it greatly increases the
usefulness of Descend while we gradually work on increasing the expressiveness of safe code.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:14 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

3.6 Handling Separated Memories in Descend

Tracking Memory Spaces. Descend annotates all reference types with address spaces. This is
similarly done in CUDA, but CUDA does not have an address space for CPU pointers and generally
does not strictly enforce their correct use. In Descend , the cpu.mem address space comprises values
stored in the CPU stack and heap. For the GPU, we di�erentiate between the global gpu.global,
shared memories gpu.shared and thread local memories gpu.local, which have separate address
spaces. Using execution resources, Descend enforces that references are only dereferenced in the
correct execution context, such as preventing dereferencing a GPU reference on the CPU. Descend
also supports polymorphism over memory spaces, by introducing a type-level variable< that is
used in place for a concrete address space.

Allocating Memory. Dynamic memory allocations, i.e., allocations on the CPU heap and in global
GPU memory, are managed via unique smart pointers to ensure that they are freed safely without
leaking memory. We call their types @-types, as they carry an annotation at which address space
they have been allocated. The memory is freed when the smart pointer is destroyed at the end of a
scope. Therefore, our type T @ cpu.mem corresponds to Box<T> in Rust. The following code shows
how memory is allocated and initialized:

Descend

1 { let cpu_array: [i32,n] @ cpu.mem = CpuHeap::new([0;n]);

2 { let global_array: [i32;n] @ gpu.global = GpuGlobal::alloc_copy(&cpu_array);

3 } // free global_array

4 } // free heap_array

In the outer block, heap memory is allocated and initialized with an array of size n �lled with 0.
The smart pointer that manages the allocation is then stored in variable cpu_array. In the inner
block, GPU global memory is allocated for the data pointed to by heap_array, the data is copied to
the GPU and the resulting smart pointer is stored in global_array. The type annotations shown
here are optional, but show the information stored in the type.

3.7 Making Implicit Assumptions Explicit in Descend

The CPU program is responsible for scheduling a GPU function for execution. In Descend , this is a
special function call, as in CUDA, where not just the function arguments are provided, but also the
executing GPU grid is speci�ed; here comprising 32 blocks with 32 threads each:

Descend

scale_vec::<<<X<32>, X<32>>>>(&uniq vec);

In contrast to CUDA, in Descend , the GPU function signature carries the information on which
grid con�guration is allowed to execute the function:

Descend

fn scale_vec(vec: &uniq gpu.global [i32; 1024]) -[grid: gpu.grid<X<32>, X<32>>]-> ();

Descend checks that the call site and the function declaration matches, to ensure that the
assumptions about how the function is written and how it is invoked do not diverge. Descend also
supports polymorphism over grid sizes, allowing GPU functions to be written that, for example,
launch as many threads as the size of the input array. In this case, the call site speci�es the concrete
values that are used for instantiating the grid size variables.

The CPU thread waits for the GPU function call to �nish, meaning there is an implicit synchro-
nization of the GPU grid at the end of each GPU computation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:15

C F Term:

; literal

⊖C | C ⊕ C unary & binary operation

? place expression

&A l ? reference/borrow

? = C assigment

for= in[..[{ C } statif for-loop

while C { C } while-loop

if C { C } else { C } if-else

C ; C sequence

A { C } block

let G : X = C de�nition

let(4) G : X declaration

5 ::⟨g ⟩::⟨4 ⟩ (?) function call

5 ::⟨g ⟩::≪d, d ; A, X≫ (C) kernel call

sched(3) ~ in 4 { C } schedule

split(3) 4 at [{ ~ ⇒ C, ~ ⇒ C } split exec

sync(4) barrier

unsafe C unsafe

l F shrd | uniq Borrowing Mode

Fig. 4. Formal syntax of Descend terms

4 THE TYPE SYSTEM OF DESCEND

In this section, we present the formal foundations of Descend , including the syntax of terms and
types, and the most important typing rules, explaining the formal reasoning behind ensuring safety.
Our type system is based on the formalization of Rust’s type system in Oxide [Weiss et al. 2019]. A
technical report with the full type system of Descend is available at https://descend-lang.org.

4.1 Syntax of Terms

Figure 4 shows the formal syntax of terms in Descend . The entries in the left column are mostly
standard. Place expressions are terms that express memory accesses. We discussed the grammar of
place expressions already in Section 3.2. References are annotated to be either shared (the default)
or unique. There exist two kinds of loops: a statically evaluated for-loop over a range of natural
numbers and a generic while-loop. In the right column we start with blocks which introduce a new
scope with a new lifetime under which to evaluate the nested terms. Let-bindings introduce and
initialize new variables. New variables can also be declared without being initialized. In this case,
the variable can be annotated with an execution resource to enable declaring variables for a sub-
execution resource that is scheduled over at a later point. Function calls instantiate a polymorphic
function 5 with data types, lifetimes, memory spaces and statically evaluated natural numbers (g),
as well as an execution resource (4). Kernel calls look similar to function calls, but no execution
resource is provided. Instead, we specify the dimensions of the grid that the kernel is executed with.
The sched operator takes a dimension and schedules the same computation over the sub-execution
resources ~ nested within execution resource 4 . The split operator splits an execution resource
into two independent parts along the given dimension at the provided position. Within the block
of the split each part can be referred to by the provided identi�er and executes the given term. It
then speci�es the computation each part performs within its body. The barrier synchronization
primitive synchronizes all threads within the provided execution resource. Unsafe executes the
nested term without the safety checks as explained in Section 3.5.

4.2 Syntax of Types

Figure 5 shows the formal syntax of kinds and types. There are four di�erent kinds: Data types,
lifetimes, memory spaces and natural numbers. We syntactically distinguish between identi�ers
that have one of these kinds for readability.

Descend types are either one of these four kinds or function types. Function types are polymorphic
over types and execution resources, beginning with a list of type identi�ers each annotated with
their kind, followed by the identi�er for an execution resource, annotated with its execution
resource type. Each parameter has a data type and belongs to an execution resource. Execution
resource types (Y) are used to annotate which execution resources a concrete function can be

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

https://descend-lang.org

181:16 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

^ F dty | rgn | mem | nat Kinds

k F U | r | m | n Type identi�er

g F X | d | ` | [Types

⟨: : ^ ⟩⟨~ : Y ⟩ (4 X)
4
−→ X,� Function Types

X F Data Types:

U type variable

bool | int | float | AtomicU32 base types

(X1, . . . , X=) tuple type

[X ; [] | JX ;[K array & view type

&d l ` X reference type

X @ ` at-type

d F r | A Lifetimes:

[F = | [| [⊕ [Natural Numbers:

` F cpu.mem Memory Spaces:

gpu.global | gpu.shared | gpu.local

m

Y F Any Execution Resource Types:

cpu.Thread

gpu.Grid d d

gpu.BlockGrp d d

gpu.Block d

gpu.ThreadGrp d

gpu.WarpGrp [

gpu.Warp

gpu.Thread

Fig. 5. Formal syntax of kinds and types in Descend .

instantiated with. The execution resource types model the runtime hierarchy and track dimensions
of execution resources. This allows for writing functions that must ful�ll certain requirements such
as being executed by a full block. We currently restrict function parameters and return types to be
data types, ruling out higher-order functions in Descend , as it is not straightforward to implement
higher-order functions e�ciently on the GPU. The execution resource which must execute the
function is written above the arrow. An access context A tracks which place expressions were
accessed within the function in order to allow checking for data races.
Data types contain the standard scalar and tuple types. Array and View types are indexed by

their size which is tracked symbolically in the type. We model reference types similarly to Oxide.
The lifetime d keeps track of which place expression the reference possibly refers to. They can
either be concrete lifetimes (A), or abstract lifetime variables (r). Lifetimes have been formalized
and explained in Oxide [Weiss et al. 2019] and FR [Pearce 2021]. The reference is marked as either
uniq or shrd. We also track the memory space ` the reference points to. The possible memory
address spaces are show on the right side of the �gure. They represent the address spaces of the
GPU memory hierarchy together with an abstract memory referred to by an identi�er. At-types
track which memory space their allocated value is stored in.

4.3 Typing Rules

Typing judgement. The main typing judgement is fairly involved with multiple environments
tracking various kinds of information. The typing judgement considers information about the
kinds of type variables (Δ), the types of local variables inside functions and active borrows (Γ),
the execution resource 4 executing the current term and possibly an execution resource identi�er
annotated with an execution resource type (~ : Y). The access environment A tracks which place
expressions have been accessed previously and are not safe to access without a synchronization.
The typing judgement is �ow-sensitive, meaning that the typing and access environments change
during the typing process. For example when accessing an owned value we are not allowed to
access it again (as it has been moved) and, therefore, it is marked as moved in the resulting typing
environment. Therefore, the typing judgement looks like:

Δ ; Γ | ~ : Y ; 4 | A ⊢ C : X ⊣ Γ
′ | A′

This says that term C has data type X under the mentioned environments and produces the updated
typing environment Γ′ and access environment A′. For readability, we omit the global program
environment P containing all function de�nitions, required for type checking function calls.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:17

T-Write-Local

isPlace(?)

Δ ; Γ | ~ : Y ; 4 | A ⊢ C : XC ⊣ Γ
′ | A′

Γ
′ (?) = (X? , 4?) 4 = 4?
Δ ; Γ′ ⊢= XC { X? ⊣ Γ

′

Γ
′ ⊢uniq borrow ? ⇒ { uniq? }

Δ ; Γ | ~ : Y ; 4 | A ⊢ ? = C : unit ⊣ Γ
′ [? ↦→ XC] | A

′

T-Write-SharedMem

¬isPlace(?) ~ : Y ⊢ 4 : gpu.Thread

Δ ; Γ | ~ : Y ; 4 | A ⊢ C : XC ⊣ Γ
′ | A′

Δ ; Γ′ | ~ : Y ; 4 ⊢
uniq

pl
? : X?

Δ ; Γ′ ⊢+ XC { X? ⊣ Γ
′′

Δ ; Γ′ | ~ : Y ; 4 | A′ ⊢uniq borrow+ ? ⇒ { uniq?′ }

Δ ; Γ | ~ : Y ; 4 | A ⊢ ? = C : unit ⊣ Γ
′′ | A′, ℓ

T-Read-By-Copy

isPlace(?) isCopyable(X)

Δ ; Γ | ~ : Y ; 4 ⊢shrd
pl

? : X

Δ ; Γ | ~ : Y ; 4 | A ⊢shrd borrow+ ? ⇒ { l?′ }

Δ ; Γ | ~ : Y ; 4 | A ⊢ ? : X ⊣ Γ | A

T-Read-By-Move

isPlace(?) ¬isCopyable(X)

Δ ; Γ | ~ : Y ; 4 ⊢
uniq

pl
? : X

Δ ; Γ | ~ : Y ; 4 | A ⊢uniq borrow+ ? ⇒ { uniq? }

Δ ; Γ | ~ : Y ; 4 | A ⊢ ? : X ⊣ Γ [? ↦→ X†] | A

T-Read-SharedMem

¬isPlace(?) isCopyable(X)

Δ ; Γ | ~ : Y ; 4 ⊢shrd
pl

? : X

Δ ; Γ | ~ : Y ; 4 | A ⊢shrd borrow+ ? ⇒ { l?′ }

Δ ; Γ | ~ : Y ; 4 | A ⊢ ? : X ⊣ Γ | A, ℓ

T-Borrow

¬isPlace(?) Γ (A) = ∅

Δ ; Γ | ~ : Y ; 4 ⊢l
pl

? : X, `

Δ ; Γ | ~ : Y ; 4 | A ⊢l borrow+ ? ⇒ { l?′ }

Δ ; Γ | ~ : Y ; 4 | A ⊢ &A l ? : &A l ` X ⊣ Γ | A

Fig. 6. Important typing rules in Descend for accessing memory for writing and reading and performing the
extended borrow safety checks.

Typing Rules. We focus on the important typing rules shown in Figure 6 and 7. They give
an overview of the most important features for avoiding data races and unde�ned behavior in
Descend . The rules are based on Oxide and adjusted to the additional requirements of GPUs with
our execution resources and extended place expression syntax.
The two rules in the �rst row type check the writing of a term C to a place expression ? . The

T-Write-Local applies if ? is a place, meaning that it does not contain dereferencing operators.
This implies that ? is in private memory and not a reference to addressable memory shared between
threads, and, therefore, it is not possible to create a data race when writing to it. When type checking
that the term C has type XC we produce updated typing and access environments Γ′ and A′. As ?
must be a variable or projection we can directly access its type X? from the typing enviroment
Γ
′ rather than performing an additional type check. We enforce that only the execution resource

owning a place writes to it by checking that 4 and 4? are equivalent. Next, we check that the types
of the left X? and right XC side are equal except for their lifetimes, where we insist the that the
lifetime in XC outlives the lifetime in X? . Finally, the rule requires that the place expression must
be borrowable uniquely under Γ′, i.e., after C is evaluated. The right-hand side of the borrowing
judgement shows the set of all aliases for ? , annotated with their borrowing mode. In this case,
since there are no references used in ? , this set must not contain any place expressions besides ? .
After performing all these checks, in the conclusion, the typing environment is updated such that
? is assigned data type XC , to re�ect the change of the value in ? .

Rule T-Write-SharedMem speci�es when a term C can be written through a reference to memory
that is possibly shared between threads. We must ensure that only singular threads write to a
shared memory location. This is formalized by requiring the current execution resource to have
execution resource type gpu.Thread. We perform the same type check for C and also check the type
of the place expression ? . The place expression typing judgement ⊢pl assigns a type to every place
expressions and makes sure that dereferencing does not violate the borrowing mode and that the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:18 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

T-Sync

4 ≈ 4′ Δ; ~ : Y ⊢ 4′ : Y′

Y′ ∈ { gpu.Block d, gpu.Warp }

A′
= { l removeSelectAfter(4′, ?) | l? ∈ A }

Δ ; Γ | ~:Y ; 4 | A ⊢ sync(4′) : unit ⊣ Γ | A′

T-Sched

Δ; ~ : Y ⊢ 4′ : Y′ 4 ≈ 4′ 4′′ = 4.forall(3)

Δ ; Γ | ~ : Y ; 4′′ | A ⊢ { C [~′ := 4′′] } : unit ⊣ Γ
′ | A′

Δ ; Γ | ~: Y ; 4 | A ⊢ sched(3) ~′ in 4′ { C } : unit ⊣ Γ
′ | A′

T-While

Δ ; Γ | ~ : Y ; 4 | A ⊢ C2 : bool ⊣ Γ
′ | A′

Δ ; Γ′ | ~ : Y ; 4.cond | A′ ⊢ C : unit ⊣ Γ
′′ | A′′

Δ ; Γ′′ | ~ : Y ; 4 | A′′ ⊢ C2 : bool ⊣ Γ
′′ | A′′

Δ ; Γ′′ | ~ : Y ; 4.cond | A′′ ⊢ C : unit ⊣ Γ
′′ | A′′

Δ ; Γ | ~ : Y ; 4 | A ⊢ while C2 { C } : unit ⊣ Γ
′′ | A′′

Fig. 7. Typing rules for barrier synchronization, scheduling computations over the execution hierarchy, and
conditional execution with a while loop.

value in ? was not moved out. Instead of performing a simple borrowing check, we perform the
extended borrow check described before in section 3. This judgement makes sure that the ownership
of ? can be narrowed to the current execution resource and that an access to the shared memory
does not con�ict with a previous access that was tracked in A′. Like the normal borrow checking
judgement, the extended borrow judgement speci�es all existing aliases for ? (the place expression

itself included) in l?′. When all checks succeed, all aliases are appended in the conclusion to the
access environment to remember the shared memory access.

There are three rules that check whether memory can be read through a place expression. Rule
T-Read-By-Copy checks that the value in ? can be read if ? does not refer to shared memory and
its value is copyable, as indicated by its data type. The extended borrow check makes sure that the
ownership of ? can be narrowed to the current execution resource. The next rule, T-Read-By-Move,
is very similar, however it applies when the value in ? is only movable. In this case the typing
environment resulting from the type check is updated to re�ect that the value of ? was moved
out. The third rule T-Read-SharedMem checks whether it is possible to read from shared memory
through references. If the rule succeeds, the access environment is updated to re�ect that ? was
accessed sharedly. The T-Borrow rule makes sure that only memory locations that are safe to
access are borrowed.
Rule T-Sync in Figure 7 checks whether the synchronization of execution resource 4′ can be

performed under current execution resource 4 . If this is the case, it updates the access environment
A′ to re�ect that accesses that would lead to a data race before the synchronization are safe again.

Rule T-Sched shows the requirements for scheduling terms over sub-execution resources. The
execution resource 4′ to schedule over must be well-typed and equivalent to the current execution
resource 4 . This execution resource is then quanti�ed by a forall(3) forming 4′′, to indicate that
each sub-execution resource in the given dimension 3 is scheduled over. Term C with every ~′

subsituted by 4′′ is then type checked under the same execution resource.
Rule T-While shows how the system tracks that a term is evaluated within a conditional branch,

in this case a loop body. First a standard check makes sure that the term containing the condition
has type bool. Then the body of the loop is is checked under the current execution resource that
is marked as being within a conditional branch (using the 4.cond notation), producing updated
typing and access environments. Under these updated environments the loop condition and body
are checked again, to re�ect the fact that there are memory accesses happening in the loop body
that may a�ect later iterations.

A technical report with the full type system of Descend is available at https://descend-lang.org.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

https://descend-lang.org

Descend : A Safe GPU Systems Programming Language 181:19

Transpose Reduce Scan Histogram
Jacobi
 SVD

Matrix Multiply GEMM
2
0
8
0
 T

i
A

1
0
0

small large

medium

small large

medium

small large

medium

small large

medium

small large

medium

small large

medium

0.0

0.5

1.0

0.0

0.5

1.0

Input sizes

M
e

d
ia

n
 R

e
la

ti
v
e

 P
e

rf
o

rm
a

n
c
e

D
e
sc

e
n
d

C
U

D
A

Fig. 8. Relative runtimes of benchmarks in CUDA and Descend. A higher bar indicates be�er performance.

5 CODE GENERATION AND EVALUATION

In this section, we give a brief overview of Descend ’s code generator and show that our code gen-
erator translates programs written in Descend ’s holistic programming model into CUDA programs
using the kernel programming model, without sacri�cing performance.

Code Generation. The Descend compiler translates Descend code into CUDA C++ code. Descend
CPU functions are translated into C++. Functions that are run on the GPU are translated into CUDA
kernels. Before generating code, we inline function calls for functions whose execution resources
are not a full grid on the GPU or thread on the CPU, e.g. functions executed by GPU blocks.

In CUDA’s kernel programming model, all blocks and threads work concurrently. This is exactly
what the nested schedule primitives in Descend are expressing. Therefore, sched does not appear
in generated CUDA code, except for a scope that is introduced for its body. The bound execution
resource variable is compiled into the equivalent index identifying the thread or block in CUDA.
Block and thread indices are used when translating selections over place expressions into raw
memory indices. When selecting from or indexing into a view, these indices are transformed to
express the access patterns these views describe. This process is performed in reversed order,
starting with the view that was applied last. Each view takes the previous index and transforms it
until the resulting index expresses a combination of all views. The remaining Descend syntax is
translated straightforwardly, dropping static information that is not required in CUDA C++, such
as memory annotations on reference types.

Experimental Setup. We performed an experimental evaluation under CentOS 7 and CUDA 12.2.0
in combination with GCC 10.2.0 on an NVIDIA A100 and a 2080 Ti GPU.We compare seven common
GPU benchmarks: transpose, reduction, scan, histogram, Jacobi SVD, a naive matrix multiplication
and amore sophisticated general matrix multiplication. Each algorithmwas implemented inDescend
from which we generated CUDA kernels that we call from handwritten benchmarking code. All
experiments except Jacobi SVD were run for three di�erent memory sizes: small, medium and large.
We ran each benchmark 100 times, and report the median kernel runtimes.

We additionally implemented an SSSP kernel by calling functions in an existing CUDA artifact.
In order to get the artifact to run, we had to use CUDA 10.1.243 and GCC 8.3.0 with the 2080 Ti.
We ran the benchmark 1000 times for each input graph.

Experimental Evaluation of Benchmarks. Figure 8 shows the performance comparison for our
�rst seven benchmarks. The simple matrix Transpose benchmark was shown in the introduction
in Listing 2. The Reduce benchmark performs a block-wide tree-reduction. The Scan benchmark
is based on the implementations by Harris [2007] and Pizzuti et al. [2022] performing iterative

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:20 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

0.00

0.25

0.50

0.75

1.00

al2
010.g

r

at
m

osm
odm

.g
r

az2
010.g

r

ca
2010.g

r

engin
e.

gr

fl2
010.g

r

ga
2010.g

r

G
A
P-ro

ad.
gr

G
L7d19.g

r

G
L7d20.g

r

G
L7d21.g

r

G
L7d22.g

r

G
L7d23.g

r

H
ard

est
y1

.g
r

ia
2010.g

r

il2
010.g

r

in
2010.g

r

kr
on_g500-lo

gn17.g
r

kr
on_g500-lo

gn18.g
r

kr
on_g500-lo

gn19.g
r

kr
on_g500-lo

gn20.g
r

ks
2010.g

r

m
c2

depi.g
r

m
i2

010.g
r

m
n2010.g

r

m
o2010.g

r

n4c6
-b

10.g
r

n4c6
-b

8.g
r

n4c6
-b

9.g
r

nc2
010.g

r

neos3
.g

r

ny
2010.g

r

oh2010.g
r

ok2
010.g

r

pa2010.g
r

pds-
100.g

r

pds-
90.g

r

r4
-2

e23.g
r

rm
at

20.g
r

rm
at

22.g
r

sx
-s

ta
ck

ov
erflo

w
.g

r

t2
em

.g
r

TF19.g
r

tn
2010.g

r

tx
2010.g

r

U
SA

-ro
ad-d

.C
A
L.g

r

U
SA

-ro
ad-d

.F
LA

.g
r

U
SA

-ro
ad-d

.N
Y.g

r

U
SA

-ro
ad-d

.U
SA

.g
r

va
2010.g

r

w
i2

010.g
r

w
ik
i-t

alk
-te

m
pora

l.g
r

Input Graphs

M
e

d
ia

n
 R

e
la

ti
v
e

 P
e

rf
o

rm
a

n
c
e

D
e
sc

e
n
d

C
U

D
A

Fig. 9. Relative runtimes of SSSP in CUDA and Descend. A higher bar indicates be�er performance.

upsweep and downsweep phases, as brie�y discussed in Section 3, in which the memory that each
thread owns changes between iterations and the amount of active threads decreases and then
increases again. The Histogram benchmark computes a GPU-wide histogram, showcasing the use of
atomic RMW operations in Descend . The JacobiSVD benchmark is taken from the ArrayFire project
[Yalamanchili et al. 2015] and computes a block-wide single value decomposition of a matrix in
shared memory. This benchmark is interesting because an earlier implementation of the benchmark
contained a data race, as shown by Wu et al. [2020], that Descend successfully prevents from being
introduced. The kernel is written for a �xed input size and executed by only a single block, which
is why it was benchmarked using only one memory size.Matrix Multiply is a naive implementation
of matrix multiplication and GEMM is a more complex tiled matrix multiplication, based on code
generated from Lift [Steuwer et al. 2016], using shared memory. We believe that these benchmarks
show that we are able to express a reasonably diverse set of applications in Descend .

Figure 8 shows that the code generated from Descend implementations is on par with CUDA code.
The GEMM implementation of Descend is consistently 20–30% faster than the CUDA implementa-
tion. We closely investigated the di�erences between the generated Descend code and the CUDA
version. While both versions implement the exact same tiling optimization and access memory in
exactly the same way, the di�erences are due to the fact that loops are unrolled manually in the
CUDA version whereas Descend generates structured loops, with statically known loop bounds,
that the underlying CUDA compiler can decide to unroll or not.

Experimental Evaluation of the SSSP Application Graph algorithms such as the single-source
shortest path (SSSP) are challenging to express in Descend , as we already described in Section 3.5.
An e�cient worklist implementation by Wang et al. [2021] is long and complex with almost 2k lines
of code and exploiting advanced features of CUDA’s weak memory model. Nonetheless, we imple-
mented the SSSP algorithm in Descend making direct use of the CUDA worklist implementation.
For that we introduce 10 helper functions performing operations on the worklist and abstracting
the use of other third party CUDA libraries such as CUB. Within these helper functions we use
unsafe inline CUDA code to call the existing CUDA implementations, which gave us a quick way
of introducing a Descend API for them. We also had to use unsafe every time (14 times) we access
graph data, because the indices used for the accesses are read from memory at runtime. This
approach is helpful for implementing complex programs that we can express in safe Descend in
order to translate them gradually or for applications such as SSSP for which safe Descend is not
expressive enough, yet. Additionally, the algorithm makes use of warp-level shu�e instructions
that we introduced in safe Descend . Figure 9 shows that the code we generate from our Descend
implementation has performance on par with the reference CUDA implementation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:21

6 RELATED WORK

Unsafe GPU Programming Systems. CUDA [Nickolls et al. 2008] from NVIDIA is most likely
the most popular GPU programming language. OpenCL [Khronos OpenCL Working Group 2023]
and more recently SYCL [Khronos SYCL Working Group 2023] are vendor independent languages
following very similar designs, but lacking some of the more recent features of CUDA.

Many language bindings for other languages have been built, such as PyCUDA/PyOpenCL [Klöck-
ner et al. 2012] in Python, exposing the CUDA programming model unchanged. For Rust, Holk et al.
[2013] propose an initial solution to express GPU programs. However, GPU programs written in
this extension are inherently unsafe. GPU kernels are written in unrestricted Rust, which can result
in programs that cannot be compiled for the GPU. Furthermore, GPU kernels are implemented
in the traditional CUDA kernel programming model, maintaining all the problems identi�ed in
Section 2. For example, dynamic indexing is the only way of expressing data accesses for di�erent
threads and therefore depends on dynamically determined thread indices. In order to guarantee
memory safety, thisc would require dynamic index out-of-bounds checks, which are explicitly
disabled for GPU kernels. Additionally, the GPU memory hierarchy is not exposed, meaning that
there is no way to use the fast on-chip shared memory.
X10 [Cunningham et al. 2011] is a parallel research language following the Asynchronous Par-

titioned Global Address Space (APGAS) programming model. It was designed without a speci�c
focus on GPU computing, with a broader goal to facilitate parallel distributed programming on
heterogeneous hardware. The fundamental concept in APGAS is a place which contains activities
that operate on state. Places are mapped to hardware, e.g. an x86 core, a cluster node or a GPU.
Places are hierarchically structured, and have access to a copy of their ancestor’s memory. For GPU
programs in X10, a place that is mapped to a GPU creates places for each block which create places
that are mapped to each thread. This leads to a holistic top-down hierarchical description of a GPU
program, similar to Descend . However, in contrast to Descend , X10 focuses on a general program-
ming model that works across distributed heterogeneous hardware. In Descend , we speci�cally
focus on providing safety for GPU programming, which X10 does not provide. For example, X10
allows explicit indexing from threads into shared memory locations, which may lead to data races.

Sequoia [Fatahalian et al. 2006] is a programming model focusing on abstractly exposing memory
hierarchies, enabling programmers to write portable programs that still focus on the di�erent levels
of the memory hierarchy. Communication between memory modules is described in an abstract
way, such that it is possible to generate di�erent implementations for it. Parallel computations are
expressed in the form of independent tasks that work on their own isolated address spaces. Tasks
are mapped to the hardware using prede�ned parallel mapping constructs and data is passed from
calling tasks to subtasks, thereby forming an execution and memory hierarchy. Tasks can have
multiple implementations to choose from for the di�erent contexts in which they are being used.
While Sequoia was originally developed for the Cell processor, it supports compiling to CUDA
[Bauer et al. 2010], but to generate e�cient programs using shared memory, tasks operate on shared
memory, enabling the possibility of data races and making Sequoia unsafe.

Safe GPU Programming Systems. There is a group of array languages with the goal of providing
safe abstractions for high-performance GPU programming following functional ideas. In these
languages, programs are safe by construction and are based on prede�ned patterns such as map

and reduce to describe computations at a high level, from which they generate low-level GPU code.
Futhark [Henriksen et al. 2017] is a functional Haskell-like language that focuses on expressing

practical high-performance GPU programs in a functional style. Because of its functional nature,
Futhark programs do not express memory accesses explicitly. The compiler lowers the functional

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

181:22 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

programs into di�erent IRs, introducing explicit memory accesses and imperative programming
constructs. The IRs are used to determine access patterns and other optimizations.
Lift [Steuwer et al. 2017] and its spiritual successor Rise [Hagedorn et al. 2020; Steuwer et al.

2022] consist of a high- and low-level functional language. High-level programs are automatically
rewritten into equivalent low-level programs that specify how to map computation to the GPU,
enabling automatic exploration of implementations for high-level programs. Low-level programs
are then executed to �nd the fastest performing one. Accelerate [McDonell et al. 2013] enables
expressing and executing parallel programs, including for the GPU, from within Haskell programs.

In comparison to all these approaches, Descend is more explicit about memory accesses, giving
the user control about which thread accesses which memory location at which time.

GPU Veri�cation Tools. One of the main goals of Descend is to avoid data races. There is pre-
vious work on static data race detection tools for GPUs like GPUVerify [Betts et al. 2012] and
Faial [Cogumbreiro et al. 2021]. These tools analyze CUDA C code attempting to detect data races.
Of course, the analyzed code may still contain other problems that we mentioned in this paper and
Descend is capable to prevent statically. GKLEE [Li et al. 2012] and SESA [Li et al. 2014] perform
symbolic execution to �nd correctness and performance problems within GPU kernels.

Formalizations of Rust. Rust’s ownership, borrowing and lifetimes have been formalized in the
FR Language [Pearce 2021] and Oxide [Weiss et al. 2019]. FR focuses on the core ideas of borrowing
and lifetimes, and the way they are implemented for current Rust versions, while maintaining
a maximally simple language with possible extensions. Some practical features of Rust are not
modelled in FR. Oxide, which was a major basis for our work, focuses on borrowing rules of a new
version of the borrow checker that is currently in development. Furthermore, it formalizes other
language features of Rust, such as polymorphic functions, slices, which can be seen as an early
inspiration for Descend ’s views and loops which are required for most practical applications. Like
Rust, these languages are not able to target GPUs.

7 CONCLUSION

GPU programming is notoriously challenging, but with Descend , we have demonstrated that it is
possible to achieve the same performance as CUDAwhile guaranteeingmemory safety and statically
rejecting programs with data races and incorrect synchronizations. Descend assists programmers in
managing CPU and GPU memory and enforcing previously implicit assumptions about the parallel
execution of GPU code. Descend extends Rust’s formal type system with execution resource and
views to implement an extended borrow checking for ensuring safe memory accesses on the GPU.
Our evaluation shows that Descend is expressive enough to write programs that achieve per-

formance on-par with the handwritten CUDA implementations while providing strong static
safety guarantees. Using limited unsafe code expands the expressiveness to applications for which
guaranteeing safety statically is currently not possible.
Of course, Descend is only one point in the design space of GPU programming languages.

It uniquely combines the imperative nature and low-level control of languages like CUDA and
OpenCL with the safety of higher level languages like Rise and Futhark. We believe that this is a
particularly interesting point in the design space that deserves more attention, as we can (largely)
maintain the familiar imperative programming style that gives programmers low-level control,
while guaranteeing data race freedom. We hope that Descend will spark interest in exploring
alternative GPU programming language designs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

Descend : A Safe GPU Systems Programming Language 181:23

REFERENCES

Robert Atkey, Michel Steuwer, Sam Lindley, and Christophe Dubach. 2017. Strategy Preserving Compilation for Parallel

Functional Code. CoRR abs/1710.08332 (2017). arXiv:1710.08332 http://arxiv.org/abs/1710.08332

Michael Bauer, John Clark, Eric Schkufza, and Alex Aiken. 2010. Sequoia++ User Manual.

Michael Bauer, Sean Treichler, and Alex Aiken. 2014. Singe: leveraging warp specialization for high performance on GPUs.

In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, Orlando, FL, USA, February

15-19, 2014, José E. Moreira and James R. Larus (Eds.). ACM, 119–130. https://doi.org/10.1145/2555243.2555258

Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a veri�er for GPU

kernels. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, Gary T. Leavens andMatthew B.

Dwyer (Eds.). ACM, 113–132. https://doi.org/10.1145/2384616.2384625

Tiago Cogumbreiro, Julien Lange, Dennis Liew Zhen Rong, and Hannah Zicarelli. 2021. Checking Data-Race Freedom of

GPU Kernels, Compositionally. In Computer Aided Veri�cation - 33rd International Conference, CAV 2021, Virtual Event,

July 20-23, 2021, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12759), Alexandra Silva and K. Rustan M.

Leino (Eds.). Springer, 403–426. https://doi.org/10.1007/978-3-030-81685-8_19

Dave Cunningham, Rajesh Bordawekar, and Vijay Saraswat. 2011. GPU programming in a high level language: compiling

X10 to CUDA. In Proceedings of the 2011 ACM SIGPLAN X10 Workshop (San Jose, California) (X10 ’11). Association for

Computing Machinery, New York, NY, USA, Article 8, 10 pages. https://doi.org/10.1145/2212736.2212744

Kayvon Fatahalian, Daniel Reiter Horn, Timothy J Knight, Larkhoon Leem, Mike Houston, Ji Young Park, Mattan Erez,

Manman Ren, Alex Aiken, William J Dally, et al. 2006. Sequoia: Programming the memory hierarchy. In Proceedings of

the 2006 ACM/IEEE Conference on Supercomputing. 83–es.

Michael Garland and David Blair Kirk. 2010. Understanding Throughput-Oriented Architectures. Commun. ACM 53, 11

(2010), 58–66. https://doi.org/10.1145/1839676.1839694

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving

high-performance the functional way: a functional pearl on expressing high-performance optimizations as rewrite

strategies. Proc. ACM Program. Lang. 4, ICFP (2020), 92:1–92:29. https://doi.org/10.1145/3408974

Mark Harris. 2007. Parallel Pre�x Sum (Scan) with CUDA.

Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. 2017. Futhark: purely functional

GPU-programmingwith nested parallelism and in-place array updates. In Proceedings of the 38th ACM SIGPLANConference

on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and

Martin T. Vechev (Eds.). ACM, 556–571. https://doi.org/10.1145/3062341.3062354

Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben van Werkhoven, and Henri E. Bal. 2023. Optimization Techniques for GPU

Programming. ACM Comput. Surv. 55, 11, Article 239 (March 2023), 81 pages. https://doi.org/10.1145/3570638

Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew Lumsdaine, and Nicholas D. Matsakis. 2013. GPU Programming

in Rust: Implementing High-Level Abstractions in a Systems-Level Language. In 2013 IEEE International Symposium

on Parallel & Distributed Processing, Workshops and Phd Forum, Cambridge, MA, USA, May 20-24, 2013. IEEE, 315–324.

https://doi.org/10.1109/IPDPSW.2013.173

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2021. Safe Systems Programming in Rust. Commun.

ACM 64, 4 (2021), 144–152.

Khronos OpenCL Working Group. 2023. The OpenCL C Speci�cation. https://registry.khronos.org/OpenCL/specs/3.0-

uni�ed/pdf/OpenCL_C.pdf Version 3.0.14.

Khronos SYCL Working Group. 2023. SYCL 2020 Speci�cation. https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-

2020.pdf revision 7.

Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and Ahmed Fasih. 2012. PyCUDA and

PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel Comput. 38, 3 (2012), 157–174.

https://doi.org/10.1016/j.parco.2011.09.001

Marcin Knap and Pawel Czarnul. 2019. Performance evaluation of Uni�ed Memory with prefetching and oversubscription

for selected parallel CUDA applications on NVIDIA Pascal and Volta GPUs. J. Supercomput. 75, 11 (2019), 7625–7645.

https://doi.org/10.1007/S11227-019-02966-8

Raphael Landaverde, Tiansheng Zhang, Ayse K. Coskun, and Martin C. Herbordt. 2014. An investigation of Uni�ed Memory

Access performance in CUDA. In IEEE High Performance Extreme Computing Conference, HPEC 2014, Waltham, MA, USA,

September 9-11, 2014. IEEE, 1–6. https://doi.org/10.1109/HPEC.2014.7040988

Guodong Li, Peng Li, Geo�rey Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and Sreeranga P. Rajan. 2012. GKLEE:

concolic veri�cation and test generation for GPUs. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPOPP 2012, New Orleans, LA, USA, February 25-29, 2012, J. Ramanujam and

P. Sadayappan (Eds.). ACM, 215–224. https://doi.org/10.1145/2145816.2145844

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

https://arxiv.org/abs/1710.08332
http://arxiv.org/abs/1710.08332
https://doi.org/10.1145/2555243.2555258
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1145/2212736.2212744
https://doi.org/10.1145/1839676.1839694
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3570638
https://doi.org/10.1109/IPDPSW.2013.173
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1007/S11227-019-02966-8
https://doi.org/10.1109/HPEC.2014.7040988
https://doi.org/10.1145/2145816.2145844

181:24 Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. 2014. Practical Symbolic Race Checking of GPU Programs. In International

Conference for High Performance Computing, Networking, Storage andAnalysis, SC 2014, NewOrleans, LA, USA, November 16-

21, 2014, Trish Damkroger and Jack J. Dongarra (Eds.). IEEE Computer Society, 179–190. https://doi.org/10.1109/SC.2014.20

Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. 2015. An Evaluation of Uni�ed Memory Technology on NVIDIA

GPUs. In 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2015, Shenzhen, China,

May 4-7, 2015. IEEE Computer Society, 1092–1098. https://doi.org/10.1109/CCGRID.2015.105

Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier. 2013. Optimising purely functional GPU

programs. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September

25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.). ACM, 49–60. https://doi.org/10.1145/2500365.2500595

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable Parallel Programming with CUDA. ACM

Queue 6, 2 (2008), 40–53. https://doi.org/10.1145/1365490.1365500

David J. Pearce. 2021. A Lightweight Formalism for Reference Lifetimes and Borrowing in Rust. ACM Trans. Program. Lang.

Syst. 43, 1 (2021), 3:1–3:73. https://doi.org/10.1145/3443420

Federico Pizzuti, Michel Steuwer, and Christophe Dubach. 2022. Generating Work E�cient Scan Implementations for

GPUs the Functional Way. In Euro-Par 2022: Parallel Processing - 28th International Conference on Parallel and Distributed

Computing, Glasgow, UK, August 22-26, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13440), José Cano and

Phil Trinder (Eds.). Springer, 335–349. https://doi.org/10.1007/978-3-031-12597-3_21

Michel Steuwer, Thomas Koehler, Bastian Köpcke, and Federico Pizzuti. 2022. RISE & Shine: Language-Oriented Compiler

Design. CoRR abs/2201.03611 (2022). arXiv:2201.03611 https://arxiv.org/abs/2201.03611

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2016. Matrix multiplication beyond auto-tuning: rewrite-based

GPU code generation. In 2016 International Conference on Compilers, Architectures and Synthesis for Embedded Systems,

CASES 2016, Pittsburgh, Pennsylvania, USA, October 1-7, 2016. ACM, 15:1–15:10. https://doi.org/10.1145/2968455.2968521

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: a functional data-parallel IR for high-performance

GPU code generation. In Proceedings of the 2017 International Symposium on Code Generation and Optimization, CGO

2017, Austin, TX, USA, February 4-8, 2017, Vijay Janapa Reddi, Aaron Smith, and Lingjia Tang (Eds.). ACM, 74–85.

http://dl.acm.org/citation.cfm?id=3049841

Kai Wang, Don Fussell, and Calvin Lin. 2021. A Fast Work-E�cient SSSP Algorithm for GPUs. In Proceedings of the 26th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Virtual Event, Republic of Korea) (PPoPP

’21). Association for Computing Machinery, New York, NY, USA, 133–146. https://doi.org/10.1145/3437801.3441605

Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed. 2019. Oxide: The Essence of Rust. CoRR

abs/1903.00982 (2019). arXiv:1903.00982 http://arxiv.org/abs/1903.00982

Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang. 2020. Simulee: detecting

CUDA synchronization bugs via memory-access modeling. In ICSE ’20: 42nd International Conference on Software

Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 937–948.

https://doi.org/10.1145/3377811.3380358

Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep Garigipati, Peter Entschev, Brian Kloppenborg, James

Malcolm, and John Melonakos. 2015. ArrayFire - A high performance software library for parallel computing with an

easy-to-use API. https://github.com/array�re/array�re

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 181. Publication date: June 2024.

https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/CCGRID.2015.105
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/3443420
https://doi.org/10.1007/978-3-031-12597-3_21
https://arxiv.org/abs/2201.03611
https://arxiv.org/abs/2201.03611
https://doi.org/10.1145/2968455.2968521
http://dl.acm.org/citation.cfm?id=3049841
https://doi.org/10.1145/3437801.3441605
https://arxiv.org/abs/1903.00982
http://arxiv.org/abs/1903.00982
https://doi.org/10.1145/3377811.3380358
https://github.com/arrayfire/arrayfire

	Abstract
	1 Introduction
	2 Challenges of GPU Programming
	2.1 The CUDA GPU Programming Model
	2.2 Challenges of the Execution & Memory Hierarchies
	2.3 Challenges of Heterogeneity

	3 Safe GPU programming with Descend
	3.1 Execution Resources
	3.2 Place Expressions and Views
	3.3 Extended borrow checking in Descend
	3.4 Shared Write Access through Atomics
	3.5 Escaping Restrictions Using Unsafe
	3.6 Handling Separated Memories in Descend
	3.7 Making Implicit Assumptions Explicit in Descend

	4 The Type System of Descend
	4.1 Syntax of Terms
	4.2 Syntax of Types
	4.3 Typing Rules

	5 Code Generation and Evaluation
	6 Related Work
	7 Conclusion
	References

