
Lift: Code Generation by 
Rewriting Algorithmic Skeletons
Michel Steuwer — michel.steuwer@glasgow.ac.uk 
and the Lift team

mailto:michel.steuwer@glasgow.ac.uk


2

1968 - Go To Statement Considered Harmful



3

1972 - Structured Programming



4

1989 - Structured Parallel Programming



5



High-Level IR

HardwareMulticore 
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Low-Level Program

Explore Optimizations
by rewriting

Code Generation 
[CGO'17]

[CASES'16]

DSL DSL DSL
Lift [ICFP’15]

[GPGPU’16]



map(         )

reduce(    )

split(n)

join

zip

Lift's High-level Primitives



map(         )

reduce(    )

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives



map(         )

reduce(    )

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

reduce(+,0, map(*, zip(a,b)))



reduce(+,0, map(*, zip(a,b)))

map(         )

reduce(    )

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives



map(         )

reduce(    )

split(n)

join

zip a b

reduce(+,0, map(*, zip(a,b)))

dotproduct.lift

* +

Lift's High-level Primitives



map(         )

reduce(    )

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map(λ rowA ↦ 
map(λ colB ↦ 
 dotProduct(rowA, colB) 

, transpose(B)) 
, A)

matrixMult.lift





Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)      

Implementation Choices as Rewrite Rules



Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)      
join(map(map(f),
  split(n, A)))

Implementation Choices as Rewrite Rules



Lift’s LOW LEVEL (OpenCL) Primitives

mapGlobal 
mapWorkgroup 
mapLocal

mapSeq  
reduceSeq

toLocal, toGlobal

mapVec, splitVec, joinVec

Work-items

Work-groups

Sequential implementations

Memory areas

Vectorisation

OpenCL conceptLift primitive



REWRITING into OPENCL

map f  ↦  mapGlobal f  |  mapWorkgroup f  |  mapLocal f  |  mapSeq f

mapLocal f  ↦ toLocal (mapLocal f)         mapLocal f  ↦ toGlobal (mapLocal f)

map f  ↦  joinVec ⚬ map (mapVec f) ⚬ splitVec n 

Map rules:

Local / global memory:

Vectorization:



Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)      

OptimizationS as MACRO Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-

cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-

join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x ). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map

primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce

primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map

primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map

(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .

2 map(� bcol .

3 reduce(+, 0) � map(⇥) � zip(arow, bcol)

4 , transpose(B))

5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .

7 map(� bs .

8 reduce(+, 0) � map(⇥) � zip(as, bs)

9 , toLocal(copy2D(tileB)))
10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))

13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .

3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .

5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .

7 map(� bs .

8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)

13 , toLocal(copy2D(tileB)))

14 , split(l, toLocal(copy2D(tileA))))

15 ,0, zip(rowOfTilesA, colOfTilesB))

16 ) � tile(m, k, transpose(B))

17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19

2D Tiling

[GPGPU’16]





Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)      

Exploration BY REWRITING

Rewritten Expression

High-Level Expression
Macro Rules

Map to OpenCL

Lowered Expression

Parameter Mapping

Specialised Expression

OpenCL Code

Code Generation



Fermi Kepler Tahiti

0

200

400

600

0

500

1000

1500

0

1000

2000

Th
ro

ug
hp

ut
 (G

Fl
op

/s
)

EXPLORATION SPACE MATRIX MULTIPLICATION

Only few generated code with very good performance [GPGPU’16]



EVEN RANDOMISED SEARCH WORKS WELL!

Still: One can expect to find a good performing kernel quickly! [GPGPU’16]



Performance Results Matrix Multiplication

Performance close or better than hand-tuned MAGMA library

Nvidia GeForce GTX 480 (Fermi)

0

250

500

750

10242 20482 40962 81922 163842

Th
ro

ug
hp

ut
 (G

flo
p/

s)

Generated  MAGMA  cuBLAS

Nvidia GeForce GTX TITAN Black (Kepler)

0

1000

2000

3000

4000

10242 20482 40962 81922 163842

Input Size

Generated  MAGMA  cuBLAS

AMD Radeon HD 7970 (Tahiti)

0

1000

2000

3000

10242 20482 40962 81922 163842

Generated clMAGMA clBLAS clBLAS Tuned

[GPGPU’16]



2 Primitives

1 Rewrite Rule

pad, slide

overlapped tiling

We added:

Stencil Computations in LIft

High-Level IR

[CGO’18] Best Paper Award



Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j <= 1; j ++) {   // ( a )
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;        
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }              
 B[ i ] = sum ; }

(a) access neighborhoods for every element

3-point-stencil.c



Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j <= 1; j ++) {   // ( a )
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;        // ( b ) 
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }              
 B[ i ] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling

3-point-stencil.c



Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j <= 1; j ++) {   // ( a )
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;        // ( b ) 
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }              // ( c ) 
 B[ i ] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c



Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j <= 1; j ++) {   // ( a )
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;        // ( b ) 
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }              // ( c ) 
 B[ i ] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c



Boundary Handling Using Pad 
pad ( reindexing ) pad ( constant )

clamp(i, n) = (i <  0) ? 0  :
             ((i >= n) ? n-1:i)

pad(1,1,clamp, [a,b,c,d]) =
    [a,a,b,c,d,d]

pad-reindexing.lift

constant(i, n) = C

pad(1,1,constant, [a,b,c,d]) =
    [C,a,b,c,d,C]

pad-constant.lift

C C



Neighborhood Creation using Slide 
size

step

slide(3,1,[a,b,c,d,e]) =

[[a,b,c],[b,c,d],[c,d,e]]

slide-example.lift

...



Applying Stencil function using Map 

map(nbh =>
  reduce(add, 0.0f, nbh))

sum-neighborhoods.lift



Putting it Together

def stencil1D =
 fun(A =>
  map(reduce(add, 0.0f),
   slide(3,1,
    pad(1,1,clamp,A))))

stencil1D.lift

slide(n,s)

pad(l,r,b) map

pad

slide

map(         )

reduce(    )

split(n)

join

zip



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

map2(sumNbh, slide2(3,1, pad2(1,1,clamp,input)))

Decompose to Re-Compose



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sumNbh, slide2(3,1, pad2(1,1,clamp,input)))



Multidimensional Boundary Handling using PAD 

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

2



pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

Multidimensional Boundary Handling using PAD 2



pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

Multidimensional Boundary Handling using PAD 2



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map3(sum, slide3(3,1, pad3(1,1,clamp,input)))



overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input)) 

u

v



overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input)) 
join(map(tile ⇒ 
  map(f, slide(3,1,tile)),
    slide(u,v,input)))

u

v



overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input)) 
join(map(tile ⇒ 
  map(f, slide(3,1,tile)),
    slide(u,v,input)))

u

v



14 Benchmarks

< 3h Exploration

6 hand-optimized

Experimental Evaluation

High-Level IR
8 polyhedral compilation

up to 20 algorithmically 
different variants

+ auto-tuning of  numerical parameters

per benchmark

GPU HPC
Mobile

3 GPU Architectures
2 Desktop GPUs
1 Mobile GPU



Comparison with Hand-Optimized codes

Lift achieves the same performance 
as hand optimized code

higher is better



Comparison with polyhedral compilation

Lift outperforms state-of-the-art 
optimizing compilers 

higher is better



Lift is open Source!

lift-project.org

Bastian Hagedorn: 

Paper CGO Artifact Source Code

more info at:

b.hagedorn@wwu.de

Best Paper Award (CGO'18)

To be continued...
Naums Mogers Toomas RemmelgChristophe Dubach Bastian HagedornLu Li Larisa Stoltzfus Michel Steuwer Federico Pizzuti Adam Harries 

Artifacts



Automatic Matching of Legacy Code to
Heterogeneous APIs: An Idiomatic Approach
Philip Ginsbach

The University of Edinburgh
philip.ginsbach@ed.ac.uk

Toomas Remmelg
The University of Edinburgh
toomas.remmelg@ed.ac.uk

Michel Steuwer
University of Glasgow

michel.steuwer@glasgow.ac.uk

Bruno Bodin
The University of Edinburgh

bbodin@ed.ac.uk

Christophe Dubach
The University of Edinburgh
christophe.dubach@ed.ac.uk

Michael F. P. O’Boyle
The University of Edinburgh

mob@ed.ac.uk

Abstract
Heterogeneous accelerators often disappoint. They provide
the prospect of great performance, but only deliver it when
using vendor speci�c optimized libraries or domain speci�c
languages. This requires considerable legacy code modi�ca-
tions, hindering the adoption of heterogeneous computing.
This paper develops a novel approach to automatically

detect opportunities for accelerator exploitation. We focus
on calculations that are well supported by established APIs:
sparse and dense linear algebra, stencil codes and generalized
reductions and histograms. We call them idioms and use a
custom constraint-based Idiom Description Language (IDL)
to discover them within user code. Detected idioms are then
mapped to BLAS libraries, cuSPARSE and clSPARSE and two
DSLs: Halide and Lift.
We implemented the approach in LLVM and evaluated

it on the NAS and Parboil sequential C/C++ benchmarks,
where we detect 60 idiom instances. In those cases where
idioms are a signi�cant part of the sequential execution time,
we generate code that achieves 1.26⇥ to over 20⇥ speedup
on integrated and external GPUs.

CCS Concepts • Computer systems organization →
Heterogeneous (hybrid) systems; • Software and its en-
gineering → Domain speci�c languages;

ACM Reference Format:
Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin,
Christophe Dubach, and Michael F. P. O’Boyle. 2018. Automatic
Matching of Legacy Code to Heterogeneous APIs: An Idiomatic
Approach. In Proceedings of 2018 Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’18). ACM, New
York, NY, USA, 15 pages. h�ps://doi.org/h�p://dx.doi.org/10.1145/
3173162.3173182

ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published
in Proceedings of 2018 Architectural Support for Programming Languages and
Operating Systems (ASPLOS’18), h�ps://doi.org/h�p://dx.doi.org/10.1145/
3173162.3173182.

1 Introduction
Heterogeneous accelerators provide the potential for great
performance. However, achieving that potential is di�cult.
General purpose languages such as OpenCL [36] provide
portability, but the achieved performance often disappoints
[29]. This shortfall has led vendors to deliver specialized
libraries to bridge the gap [2]. Alternatively, domain speci�c
languages (DSLs) [15, 45] have been proposed, attempting
to deliver both portability and performance [41].

Hardware becomes increasingly heterogeneous, (e.g. TPU
[25]). This means library or DSL based programming is likely
to become far more common and future programmers are
expected to target those APIs.

However, there are problems with this trend. Firstly, users
have to learn multiple specialized DSLs and vendor-speci�c
libraries. Secondly, users have to restructure and rewrite their
applications to use them. Having to learn and understand
several new APIs and then rewrite existing applications is a
severe impediment to the wide-spread e�cient exploitation
of heterogeneous hardware. Ideally, we would like a mecha-
nism that automatically maps existing code to heterogeneous
hardware using the appropriate APIs without user e�ort.

Our approach is based on detecting speci�c structures or
idioms in user code that correspond to the functionality of
existing APIs for heterogeneous acceleration. We focus on
idioms that are well supported by existing libraries and DSLs.
These are likely to be both relevant to existing code bases and
have e�cient heterogeneous implementations. We consider
sparse and dense linear algebra, stencils and generalized
reductions and histograms.

At the heart of our approach is the ability to describe each
idiom in a concise Idiom Description Language (IDL). After
the user’s C/C++ program has been compiled down to LLVM
IR, our tool reads in an IDL program and translates into a
set of constraints. These are passed to a fast solver to search
the user’s program, detecting all idiom instances.
Once detected, the idioms are mechanically translated

into the appropriate DSL or replaced with a library call. This
optimized code is then linked into the original program. We
currently target the libraries cuSparse, clSparse, cuBLAS,
clBLAS for sparse and dense linear algebra and target the

ACCELERATING Legacy Code
[ASPLOS’18]



  …

IDIOM DETECTION VIA CONSTRAINT LANGUAGE
[ASPLOS’18]

DSL Halide [41] for stencil computations. We also target
Lift [47] - a data parallel language that supports generalized
reductions as well as stencils and linear algebra. This allows
the freedom to target many APIs for the same idiom and pick
the implementation that best suits the target platform.

New idioms can be easily added thanks to the �exibility of
IDL. This provides a powerful means of determining whether
a new heterogeneous API matches existing code without
touching the core compiler. The idioms addressed in this
paper can be expressed in less than 500 lines of IDL code.
Our approach is also highly robust, it has been applied to the
entire NAS and Parboil benchmark suites and is evaluated
on three platforms.

We present a novel approach that:

• De�nes a programming language for specifying code
idioms, the Idiom Description Language (IDL)

• Implements common idioms in IDL to automatically
discover opportunities for accelerator exploitation

• E�ciently translates and maps the detected idioms to
APIs for heterogeneous systems

While there has been much research in using constraints
for program analysis [34], there is little prior work in its use
for idiom detection. In [16], constraints are used for detecting
reductions, but this is tightly coupled to a specialized code
generation phase for small-scale multi-core systems.

The work most similar in approach concerns discovery of
stencil computation and mapping to the Halide DSL. Helium
[31] recovers stencils from image-processing binaries. This
requires large scale dynamic analysis of binary traces and re-
placing them with Halide calls. This is signi�cantly extended
in [27] which detects stencils in FORTRAN. In this work the
focus is on inferring post invariants based on syntax guided
synthesis in translation to Halide. However, it uses a nar-
row approach to selecting code snippets and relies on well
structured FORTRAN with occasional user annotations. Our
approach is distinct in that we use an external programming
language to describe the idioms we are interested in. This
allows an unbounded set of idioms to be considered across
arbitrary programs and is not restricted to stencils.

To summarize, this paper presents an automatic approach
that discovers idioms in legacy code and maps them to het-
erogeneous platforms via libraries and DSLs. We apply it to
21 C/C++ programs from the NAS and Parboil benchmark
suites and demonstrate that it detects more reductions, sten-
cils, matrix multiplications and sparse matrix-vector compu-
tations than existing schemes. For the idioms that dominate
execution time, we generate code and evaluate on 3 plat-
forms: a multi-core CPU, an integrated and an external GPU.
Overall we detect 60 idioms. In 10 programs these dominate
sequential execution time and are worth exploiting. This
results in speedups ranging from 1.26⇥ to over 20⇥.

C/C++ IDL

optimized
LLVM IR

Input
Program

Idiom
Description

Constraint
Formula

Constraints
Solver

Code extraction

LLVM IR +
lib call

Binary

lib
object

lib
object

Vendor Libraries

Domain Specific
Code Generators

LLVM IR +
DSL code

Figure 1. Work�ow of our system

2 Overview
Our approach is automatic and has been implemented inside
the LLVM compiler infrastructure. It takes arbitrary sequen-
tial C/C++ programs as input. Using the clang compiler, the
input source code is compiled into a Single Static Assignment
(SSA) intermediate representation. We then search this repre-
sentation for particular idioms which are replaced with calls
to speci�c APIs. Finally, the code generated by the LLVM
compiler and the output of the idiom speci�c code genera-
tors/libraries are linked together into a binary, producing an
optimized program. LLVM was chosen as it is the best sup-
ported SSA-based compiler; the methodology could easily
be transferred to other infrastructures such as gcc.

2.1 Compiler Flow
The structure of our approach is described in more detail in
Figure 1. Our compiler takes two programs as inputs: the
�rst is the user’s program source code, the second describes
the idioms we wish to detect using our idiom description
language (section 3). The same idioms, of course, can be
detected across many user programs, so the IDL program
does not have to change from one run to the next.

The program source code is compiled to optimized LLVM
IR code while the idiom description is translated into con-
straints and represented internally as a C++ object. The C++
representation of the constraints and the user program LLVM
IR code are then passed as inputs to a backtracking solver
[16], which detects all cases where the idioms can be found
in the LLVR IR.
The recognized idioms as well as the LLVM IR code are

then passed on to the transformation phase of our system.



PERFORMANCE RESULTS
[ASPLOS’18]

Runtime Coverage of detected Idioms (NAS PB + Parboil)

Speedup vs. Sequential (using BLAS, Halide, Lift as backends)



The LIFT Project

#UofGWorldChangers
@UofGlasgow

Michel Steuwer — michel.steuwer@glasgow.ac.uk

www.lift-project.org @LIFTlang

mailto:michel.steuwer@glasgow.ac.uk
http://www.lift-project.org
https://twitter.com/Liftlang

