Generating Performance Portable Code with Lift

Christophe Dubach Michel Steuwer and the Lift team

Shonan Meeting 134 3rd September 2018

Diversity is everywhere

Parallel processors everywhere

Many different types:
 CPUs, GPUs, FPGAs, special Accelerators,...

Parallel programming is hard

Optimising is even harder

2

Holy Grail: Performance Portability

- Some people think we already have this
- e.g. OpenMP, OpenCL, OpenACC
- It's a delusion! (or a question of definition)

- Single-source performance portability
- Programs should be written once and for all
- Exploit effectively current and future hardware
 - e.g. fast execution, low energy consumption

How to sum an array?

How to sum an array?

```
float acc = 0;
for (int i=0; i<N; i++)
  acc += input[i];
out[0] = acc;</pre>
```

How to really sum an array?

```
kernel void sum(global float* g_in, global float* g_out,
                unsigned int n, local volatile float* l_data) {
  unsigned int tid = get_local_id(0);
  unsigned int i = get_group_id(0) * 256 + get_local_id(0);
  l_data[tid] = 0;
  while (i < n) {
   l_data[tid] += g_in[i];
    i += 256 * get_num_groups(0);
  barrier(CLK_LOCAL_MEM_FENCE);
  if (tid < 128)
   l_data[tid] += l_data[tid+128];
  barrier(CLK_LOCAL_MEM_FENCE);
  if (tid < 64)
   l_data[tid] += l_data[tid+ 64];
  barrier(CLK_LOCAL_MEM_FENCE)
  if (tid < 32) {
   l_data[tid] += l_data[tid+32]; l_data[tid] += l_data[tid+16];
   l_data[tid] += l_data[tid+ 8]; l_data[tid] += l_data[tid+ 4];
    l_data[tid] += l_data[tid+ 2]; l_data[tid] += l_data[tid+ 1];
  if (tid = 0)
    g_out[get_group_id(0)] = l_data[0];
```

Performance is clearly not portable

Performance Portability needs two ingredients

- Hardware agnostic high-level language
- Shield the programmer from any hardware-specific details

- Generic & reusable compilation and optimisation process
 - Express hardware-paradigms
 - Extensible mechanism
 - Express optimisations and automatic exploration

We already have performance portability for sequential machines

- Hardware agnostic high-level language
- e.g. C
- control flow, functions, data structures

- Generic & reusable compilation and optimisation process
 - •e.g. LLVM
 - TableGen for writing backends
 - loop optimisations

Current landscape for parallel / heterogenous machines

Not solved yet for parallel / heterogenous machines

- High-level programming abstractions are here
- Accelerate, Futhark, LiquidMetal, Delite, Halide
- All functional in nature
- Hides the hardware!
- High-level information available to the compiler

- ·However, reusable and portable compilation/optimisation is lacking behind
- Currently, specialised backend and optimiser for each hardware target

What we need

Bottom up Approach

Lift: Layered language Approach

High-Level Lift

Intermediate Lift

Low-level Lift

dotproduct.lift

dotproduct.lift

zip(a,b)

dotproduct.lift

map(*, zip(a,b))

dotproduct.lift

reduce(+,0, map(*, zip(a,b)))

matrixMult.lift

```
map(λ rowA →
  map(λ colB →
      dotProduct(rowA, colB)
  , transpose(B))
  , A)
```


IMPLEMENTATION CHOICES AS REWRITE RULES

IMPLEMENTATION CHOICES AS REWRITE RULES

CORRECTNESS OF REWRITE RULES

```
join (map (map f) (split n [x_1, ..., x_n])
 def. of split
   = join (map (map f) | [x_1, ..., x_n], ..., [x_{m-n}, ..., x_m] )
 def. of map
   = join [(map f) [x_1, ..., x_n], ..., (map f) [x_{m-n}, ..., x_m]]
 def. of map
   = join [[f x_1, ..., f x_n], ..., [f x_{m-n}, ..., f x_m]]
 def. of join
   = [f x_1, ..., f x_n] = map f [x_1, ..., x_n]
```

See also: The Algebra of Programming by Richard Bird and Oege De Moor

LIFT'S LOW LEVEL (OPENCL) PRIMITIVES

Lift primitive	OpenCL concept
----------------	----------------

mapGlobal Work-items

mapWorkgroup

mapLocal Work-groups

mapSeq
Sequential implementations
reduceSeq

toLocal, toGlobal Memory areas

mapVec, splitVec, joinVec vectorisation

REURITING INTO OPENCL

Map rules:

```
map(f, x) \mapsto mapGlobal(f, x) \mid mapWorkgroup(f, x) \mid mapLocal(f, x) \mid mapSeq(f, x)
```

Local / global memory:

```
mapLocal(f, x) \mapsto toLocal(mapLocal(f, x)) mapLocal(f, x) \mapsto toGlobal(mapLocal(f, x))
```

Vectorization:

```
map(f, x) \mapsto joinVec(map(mapVec(f), splitVec(n, x)))
```

OPTIMIZATIONS AS MACRO RULES

2D Tiling

Naïve matrix multiplication

```
1 \quad map(\lambda \ arow \ .
2 \quad map(\lambda \ bcol \ .
3 \quad reduce(+, 0) \circ map(\times) \circ zip(arow, bcol)
4 \quad , transpose(B))
5 \quad , A)
```


Apply tiling rules

```
1  untile ∘ map(λ rowOfTilesA .
2  map(λ colOfTilesB .
3  toGlobal(copy2D) ∘
4  reduce(λ (tileAcc, (tileA, tileB)) .
5  map(map(+)) ∘ zip(tileAcc) ∘
6  map(λ as .
7  map(λ bs .
8  reduce(+, 0) ∘ map(×) ∘ zip(as, bs)
9  , toLocal(copy2D(tileB)))
10  , toLocal(copy2D(tileA)))
11  ,0, zip(rowOfTilesA, colOfTilesB))
12  ) ∘ tile(m, k, transpose(B))
13  ) ∘ tile(n, k, A)
```


[GPGPU'16]

EXPLORATION BY REURITING

EXPLORATION SPACE MATRIX MULTIPLICATION

Only few generated code with very good performance

EVEN RANDOMISED SEARCH WORKS WELL!

Still: One can expect to find a good performing kernel quickly!

PERFORMANCE RESULTS MATRIX MULTIPLICATION

Performance close or better than hand-tuned MAGMA library

[CGO'18] Best Paper Award

STENCIL COMPUTATIONS IN LIFT

DECOMPOSING STENCIL COMPUTATIONS

3-point-stencil.c

```
for (int i = 0; i < N; i ++) {
    int sum = 0;
    for ( int j = -1; j <= 1; j ++) { // (a)
        int pos = i + j;
        pos = pos < 0 ? 0 : pos;
        pos = pos > N - 1 ? N - 1 : pos;
        sum += A[ pos ]; }
B[ i ] = sum; }
```


(a) access neighborhoods for every element

DECOMPOSING STENCIL COMPUTATIONS

3-point-stencil.c

- (a) access neighborhoods for every element
- (b) specify boundary handling

DECOMPOSING STENCIL COMPUTATIONS

3-point-stencil.c

- (a) access neighborhoods for every element
- (b) specify boundary handling
- (c) apply stencil function to neighborhoods

DECOMPOSING STENCIL COMPUTATIONS

3-point-stencil.c

- (a) access neighborhoods for every element
- (b) specify boundary handling
- (c) apply stencil function to neighborhoods

BOUNDARY HANDLING USING PAD

pad (constant)

pad-reindexing.lift

$$clamp(i, n) = (i < 0) ? 0 :$$

 $((i >= n) ? n-1:i)$

pad-constant.lift

$$constant(i, n) = C$$

NEIGHBORHOOD CREATION USING SLIDE

slide-example.lift

```
slide(3,1,[a,b,c,d,e]) =
   [[a,b,c],[b,c,d],[c,d,e]]
```

APPLYING STENCIL FUNCTION USING MAP

sum-neighborhoods.lift

```
map(nbh =>
reduce(add, 0.0f, nbh))
```

PUTTING IT TOGETHER

MULTIDIMENSIONAL STENCIL COMPUTATIONS

are expressed as compositions of intuitive, generic 1D primitives

Decombose to be Combose

MULTIDIMENSIONAL STENCIL COMPUTATIONS

are expressed as compositions of intuitive, generic 1D primitives

pad₂(1,1,clamp,input)

Decombose to be combose

MULTIDIMENSIONAL BOUNDARY HANDLING USING PAD 2

MULTIDIMENSIONAL BOUNDARY HANDLING USING PAD 2

pad(l,r,b,input)

MULTIDIMENSIONAL BOUNDARY HANDLING USING PAD 2

$$pad_2 = map(pad(1,r,b,pad(1,r,b,input)))$$

ONS

MULTIDIMENSIONAL STENCIL COMPUTATIONS

are expressed as compositions of intuitive, generic 1D primitives

pad₂(1,1,clamp,input)

Decombose to Re-Combose

MULTIDIMENSIONAL STENCIL COMPUTATIONS

are expressed as compositions of intuitive, generic 1D primitives

slide, (3,1, pad, (1,1,clamp,input))

Decombose to Re Combose

MULTIDIMENSIONAL STENCIL COMPUTATIONS

are expressed as compositions of intuitive, generic 1D primitives

map (sum, slide (3,1, pad (1,1,clamp,input)))

are expressed as compositions of intuitive, generic 1D primitives

map₃(sum, slide₃(3,1, pad₃(1,1,clamp,input)))

OVERLAPPED TILING AS A REWRITE RULE

overlapped tiling rule

map(f, slide(3,1,input))

OVERLAPPED TILING AS A REWRITE RULE

OVERLAPPED TILING AS A REWRITE RULE

overlapped tiling rule

EXPERIMENTAL FUALUATION

COMPARISON WITH HAND-OPTIMIZED CODES

higher is better

Lift achieves the same performance as hand optimized code

COMPARISON WITH POLYHEDRAL COMPILATION

higher is better

Lift outperforms state-of-the-art optimizing compilers

Lift works beyond GPUs

Moving onto FPGAs

Stream In Stream Out ReduceStream

Matrix-multiplication on FPGA

```
map(λ rowA →

map(λ colB →

    dotProduct(rowA, colB)
    , transpose(B))
, A)
```


Zynq 7000 results (preliminary)

Optimisation Space Exploration with Rewrites

Performance Models

- Machine-learning based
- Extract features directly from high-level expression

Neural Networks with Lift

- CNN (Convolution)
 - Building blocks:
 - convolution, fully-connected, pooling
 - Architecture:
 - VGG, GoogleNet, ResNet
 - Optimisations example:
 - Stacked Systolic Array
 - Winograd transform
 - Weight pruning
 - Quantisation

- RNN (Recurrent)
- Building block
 - LSTM (Long short-term memory)

LIFT IS OPEN SOURCE!

more info at:

lift-project.org

Artifacts

Source Code

Naums Mogers

Lu Li

Christophe Dubach Bastian Hagedorn Toomas Remmelg

Larisa Stoltzfus

Michel Steuwer

Federico Pizzuti

Adam Harries