
Generating Performance
Portable Code with Lift
Christophe Dubach 
Michel Steuwer 
and the Lift team 
 
Shonan Meeting 134 
3rd September 2018

 2

Diversity is everywhere

• Parallel processors everywhere

• Many different types: 
CPUs, GPUs, FPGAs, special Accelerators,…

• Parallel programming is hard

• Optimising is even harder

CPU

GPU

FPGA

Accelerator

TPU

Brainwave

HPU

EDGE
Transmuter

Microsoft

Microsoft

Microsoft
Google Uni. of Michigan

…

Intel

 3

Holy Grail: Performance Portability

• Some people think we already have this

• e.g. OpenMP, OpenCL, OpenACC

• It's a delusion! (or a question of definition) 

• Single-source performance portability

• Programs should be written once and for all

• Exploit effectively current and future hardware

• e.g. fast execution, low energy consumption

 4

How to sum an array?

 5

 float acc = 0;

 for (int i=0; i<N; i"++)

 acc += input[i];

 out[0] = acc;

How to sum an array?

 6

How to really sum an array?

kernel void sum(global float* g_in, global float* g_out,
 unsigned int n, local volatile float* l_data) {

 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * 256 + get_local_id(0);

 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_in[i];
 i += 256 * get_num_groups(0);
 }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (tid < 128)
 l_data[tid] += l_data[tid+128];
 barrier(CLK_LOCAL_MEM_FENCE);
 if (tid < 64)
 l_data[tid] += l_data[tid+ 64];
 barrier(CLK_LOCAL_MEM_FENCE)

 if (tid < 32) {
 l_data[tid] += l_data[tid+32]; l_data[tid] += l_data[tid+16];
 l_data[tid] += l_data[tid+ 8]; l_data[tid] += l_data[tid+ 4];
 l_data[tid] += l_data[tid+ 2]; l_data[tid] += l_data[tid+ 1];
 }
 if (tid "== 0)
 g_out[get_group_id(0)] = l_data[0];
}

 7

Performance is clearly
not portable

100%

Performance is clearly not portable

 8

Performance Portability needs two ingredients

• Generic & reusable compilation and optimisation process
•Express hardware-paradigms

•Extensible mechanism

•Express optimisations and automatic exploration

• Hardware agnostic high-level language
• Shield the programmer from 

any hardware-specific details

 9

We already have performance portability 
for sequential machines

• Generic & reusable compilation and optimisation process
•e.g. LLVM

•TableGen for writing backends

• loop optimisations

• Hardware agnostic high-level language
• e.g. C

• control flow, functions, data structures

 10

Current landscape for parallel / heterogenous machines

Applications

OpenCL OpenMP VHDL

Parallel
Hardware

Device-specific
interface

GPUs Multicore CPUs FPGAs

C library

NN
Accelerator

...

...

 11

Not solved yet for parallel / heterogenous machines

• High-level programming abstractions are here
• Accelerate, Futhark, LiquidMetal, Delite, Halide

• All functional in nature

• Hides the hardware!

• High-level information available to the compiler

 

•However, reusable and portable compilation/optimisation is lacking behind
• Currently, specialised backend and optimiser for each hardware target

Map Reduce

GatherStencil

 12

What we need

Applications

Image

Processing

Domain Specific

Languages (DSLs)

Neural

Networks

Graph

Analytics

Data-Parallel
Intermediate Language

OpenCL OpenMP VHDL

Compiler

Technology

GPUs Multicore CPUs FPGAs

C library

NN

Accelerator

...

...

...

Performance Portable
Code Generator

Language for

Parallelism

 13

Bottom up Approach

Applications

Image
Processing

Neural
Networks

Graph
Analytics

Data-Parallel
Intermediate Language

OpenCL OpenMP VHDL

GPUs Multicore CPUs FPGAs

C library

NN
Accelerator

...

...

...

Performance Portable
Code Generator

Lift
(bottom-up)

 14

Lift: Layered language Approach

Applications

Image
Processing

Neural
Networks

Graph
Analytics

Data-Parallel
Intermediate Language

OpenCL OpenMP VHDL

GPUs Multicore CPUs FPGAs

C library

NN
Accelerator

...

...

...

Performance Portable
Code Generator

Lift
(bottom-up)

High-Level Lift

Intermediate Lift

Low-level Lift

 15

High-Level IR

HardwareMulticore
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Low-Level Program

Explore Optimizations
by rewriting

Code Generation
[CGO'17]

[CASES'16]

DSL DSL DSL
Lift [ICFP’15]

[GPGPU’16]

map()

reduce()

split(n)

join

zip

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

reduce(+,0, map(*, zip(a,b)))

reduce(+,0, map(*, zip(a,b)))

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

reduce(+,0, map(*, zip(a,b)))

dotproduct.lift

* +

Lift's High-level Primitives

map()

reduce()

split(n)

join

zip a b

dotproduct.lift

* +

Lift's High-level Primitives

map(λ rowA ↦
map(λ colB ↦
 dotProduct(rowA, colB)

, transpose(B))
, A)

matrixMult.lift

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)

Implementation Choices as Rewrite Rules

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)
join(map(map(f),
 split(n, A)))

Implementation Choices as Rewrite Rules

Correctness of Rewrite Rules

See also: The Algebra of Programming by Richard Bird and Oege De Moor

Lift’s LOW LEVEL (OpenCL) Primitives

mapGlobal 
mapWorkgroup 
mapLocal

mapSeq  
reduceSeq

toLocal, toGlobal

mapVec, splitVec, joinVec

Work-items

Work-groups

Sequential implementations

Memory areas

Vectorisation

OpenCL conceptLift primitive

REWRITING into OPENCL

map(f, x) ↦ mapGlobal(f, x) | mapWorkgroup(f, x) | mapLocal(f, x) | mapSeq(f, x)

mapLocal(f, x) ↦ toLocal(mapLocal(f, x)) mapLocal(f, x) ↦ toGlobal(mapLocal(f, x))

map(f, x) ↦ joinVec(map(mapVec(f), splitVec(n, x)))

Map rules:

Local / global memory:

Vectorization:

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)

OptimizationS as MACRO Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-

cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-

join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map

primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce

primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map

primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map

(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map(vectorize(f)) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .

2 map(� bcol .

3 reduce(+, 0) � map(⇥) � zip(arow, bcol)

4 , transpose(B))

5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .

7 map(� bs .

8 reduce(+, 0) � map(⇥) � zip(as, bs)

9 , toLocal(copy2D(tileB)))
10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12) � tile(m, k, transpose(B))

13) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .

3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .

5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .

7 map(� bs .

8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12) � zip(transpose(aBlocks), bs)

13 , toLocal(copy2D(tileB)))

14 , split(l, toLocal(copy2D(tileA))))

15 ,0, zip(rowOfTilesA, colOfTilesB))

16) � tile(m, k, transpose(B))

17) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19

2D Tiling

[GPGPU’16]

Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)

Exploration BY REWRITING

Rewritten Expression

High-Level Expression
Macro Rules

Map to OpenCL

Lowered Expression

Parameter Mapping

Specialised Expression

OpenCL Code

Code Generation

Fermi Kepler Tahiti

0

200

400

600

0

500

1000

1500

0

1000

2000

Th
ro

ug
hp

ut
 (G

Fl
op

/s
)

EXPLORATION SPACE MATRIX MULTIPLICATION

Only few generated code with very good performance [GPGPU’16]

EVEN RANDOMISED SEARCH WORKS WELL!

Still: One can expect to find a good performing kernel quickly! [GPGPU’16]

Performance Results Matrix Multiplication

Performance close or better than hand-tuned MAGMA library

Nvidia GeForce GTX 480 (Fermi)

0

250

500

750

10242 20482 40962 81922 163842

Th
ro

ug
hp

ut
 (G

flo
p/

s)

Generated MAGMA cuBLAS

Nvidia GeForce GTX TITAN Black (Kepler)

0

1000

2000

3000

4000

10242 20482 40962 81922 163842

Input Size

Generated MAGMA cuBLAS

AMD Radeon HD 7970 (Tahiti)

0

1000

2000

3000

10242 20482 40962 81922 163842

Generated clMAGMA clBLAS clBLAS Tuned

[GPGPU’16]

2 Primitives

1 Rewrite Rule

pad, slide

overlapped tiling

We added:

Stencil Computations in LIft

High-Level IR

[CGO’18] Best Paper Award

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) { // (a)
 int pos = i + j;
 pos = pos < 0 ? 0 : pos;
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

(a) access neighborhoods for every element

3-point-stencil.c

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) { // (a)
 int pos = i + j;
 pos = pos < 0 ? 0 : pos; // (b)
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; }
 B[i] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling

3-point-stencil.c

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) { // (a)
 int pos = i + j;
 pos = pos < 0 ? 0 : pos; // (b)
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; } // (c)
 B[i] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c

Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) {
 int sum = 0;
 for (int j = -1; j <= 1; j ++) { // (a)
 int pos = i + j;
 pos = pos < 0 ? 0 : pos; // (b)
 pos = pos > N - 1 ? N - 1 : pos;
 sum += A[pos]; } // (c)
 B[i] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c

Boundary Handling Using Pad
pad (reindexing) pad (constant)

clamp(i, n) = (i < 0) ? 0 :
 ((i >= n) ? n-1:i)

pad(1,1,clamp, [a,b,c,d]) =
 [a,a,b,c,d,d]

pad-reindexing.lift

constant(i, n) = C

pad(1,1,constant, [a,b,c,d]) =
 [C,a,b,c,d,C]

pad-constant.lift

C C

Neighborhood Creation using Slide
size

step

slide(3,1,[a,b,c,d,e]) =

[[a,b,c],[b,c,d],[c,d,e]]

slide-example.lift

...

Applying Stencil function using Map

map(nbh =>
 reduce(add, 0.0f, nbh))

sum-neighborhoods.lift

Putting it Together

def stencil1D =
 fun(A =>
 map(reduce(add, 0.0f),
 slide(3,1,
 pad(1,1,clamp,A))))

stencil1D.lift

slide(n,s)

pad(l,r,b) map

pad

slide

map()

reduce()

split(n)

join

zip

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

map2(sumNbh, slide2(3,1, pad2(1,1,clamp,input)))

Decompose to Re-Compose

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sumNbh, slide2(3,1, pad2(1,1,clamp,input)))

Multidimensional Boundary Handling using PAD

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

2

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

Multidimensional Boundary Handling using PAD 2

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

Multidimensional Boundary Handling using PAD 2

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))

Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map3(sum, slide3(3,1, pad3(1,1,clamp,input)))

overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input))

u

v

overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input))
join(map(tile ⇒
 map(f, slide(3,1,tile)),
 slide(u,v,input)))

u

v

overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input))
join(map(tile ⇒
 map(f, slide(3,1,tile)),
 slide(u,v,input)))

u

v

14 Benchmarks

< 3h Exploration

6 hand-optimized

Experimental Evaluation

High-Level IR
8 polyhedral compilation

up to 20 algorithmically
different variants

+ auto-tuning of numerical parameters

per benchmark

GPU HPC
Mobile

3 GPU Architectures
2 Desktop GPUs
1 Mobile GPU

Comparison with Hand-Optimized codes

Lift achieves the same performance
as hand optimized code

higher is better

Comparison with polyhedral compilation

Lift outperforms state-of-the-art
optimizing compilers

higher is better

 59

Applications

Image

Processing

Domain Specific

Languages (DSLs)

Neural

Networks

Graph

Analytics

Data-Parallel
Intermediate Language

OpenCL OpenMP VHDL

Compiler

Technology

GPUs Multicore CPUs FPGAs

C library

NN

Accelerator

...

...

...

Performance Portable
Code Generator

Language for

Parallelism

Lift works beyond GPUs

 60

Moving onto FPGAs

mapStream

splitStream

reduceStream

 61

Matrix-multiplication on FPGA
map(λ rowA ↦

map(λ colB ↦
 dotProduct(rowA, colB)

, transpose(B))
, A)

split(B_num_col,
 toHost(let(λ B ↦
 joinStream(
 mapStream(λ a_row ↦ let(λ a_row ↦
 joinStream(
 mapStream(λ b_col ↦ dotProduct(a_row, b_col)
 , splitStream(B_num_col, B)))
 , a_row)
 , splitStream(A_num_col, toFPGA(flatten(A)))))
 , toFPGA(flatten(transpose(B))))))

 62

Zynq 7000 results (preliminary)

0.00

0.01

0.10

1.00

10.00

128x128

256x256

512x512

1024x1024

2048x2048

Th
ro

ug
hp

ut
 (G

op
s)

C Naive C Optimized FPGA (HLS) FPGA (Lift)

 63

Optimisation Space Exploration with Rewrites

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Th
ro

ug
hp

ut
 (G

op
s)

 Lift Baseline
+ Pipelined Multiplication

+ Vectorized operations (factor 4)
+ Coarse-grained parallelism (factor 2)

 64

Performance Models

•CNN (Convolution)

•Building blocks:

•convolution, fully-connected, pooling

•Architecture:

•VGG, GoogleNet, ResNet

•Optimisations example:

•Stacked Systolic Array

•Winograd transform

•Weight pruning

•Quantisation

•RNN (Recurrent)

•Building block

•LSTM (Long short-term memory)

•Machine-learning based
•Extract features directly from high-level expression

Neural Networks with Lift

Lift is open Source!

lift-project.org

Bastian Hagedorn:

Paper CGO Artifact Source Code

more info at:

b.hagedorn@wwu.de

Best Paper Award (CGO'18)

To be continued...
Naums Mogers Toomas RemmelgChristophe Dubach Bastian HagedornLu Li Larisa Stoltzfus Michel Steuwer Federico Pizzuti Adam Harries

Artifacts

