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Diversity is everywhere

• Parallel processors everywhere 

• Many different types: 
CPUs, GPUs, FPGAs, special Accelerators,… 

• Parallel programming is hard 

• Optimising is even harder
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Case Study: Parallel Reduction in OpenCL

• Summing up all values of an array

• Comparison of 7 implementations by Nvidia

• Investigating complexity and efficiency of optimisations5.1 a case study of opencl optimizations 119

First OpenCL Kernel

Second OpenCL Kernel

Figure 5.1: The first OpenCL kernel is executed by four work-groups in
parallel: work-group 0, work-group 1, work-group 2,

work-group 3. The second OpenCL kernel is only executed
by the first work-group. The bold lines indicate synchronization
points in the algorithm.

the work-group to compute the final result. The vast majority of the
work is done in the first phase and the input size to the second phase
is comparably small, therefore, the limited exploitation of parallelism
in the second phase does not effect overall performance much. For
this reason we will discuss and show only the differences and opti-
mizations in the first OpenCL kernel.

We will follow the methodology established in [82] and evaluate
the performance of the different versions using the measured GPU
memory bandwidth as our metric. The memory bandwidth is com-
puted by measuring the runtime in seconds and dividing it by the
input data size which is measured in gigabytes. As we use the same
input data size for all experiments, the bandwidth results shown in
this section directly correspond to the inverse of the measured run-
time. By investigating the memory bandwidth of the GPU memory,
we can see which fraction of the maximum memory bandwidth avail-
able has been utilized. Using the memory bandwidth as evaluation
metric for the parallel reduction is reasonable as the reduction has a
very low arithmetic intensity and its performance is, therefore, bound
by the available GPU memory bandwidth.

All following implementations are provided by Nvidia as part of
their software development kit and presented in [82]. These imple-
mentations have originally been developed for Nvidia’s Tesla GPU
architecture [109] and not been updated by Nvidia for more recent
GPU architectures. Nevertheless, the optimizations discussed are still
beneficial on more modern Nvidia GPUs– as we will see. All perfor-
mance numbers in this section have been measured on a Nvidia GTX
480 GPU featuring the Nvidia Fermi architecture [157].
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Parallel reduction with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}
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Parallel reduction with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Kernel function executed in parallel by multiple work-items

Work-items are identified by a unique global id



 6

kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Work-items are grouped into work-groups Local id within work-group

Parallel reduction with OpenCL
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kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Big, but slow global memory
Small, but fast local memory

Memory barriers for consistency

Parallel reduction with OpenCL
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kernel void reduce(global float* g_idata, global float* g_odata, 
                   unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

Functionally correct implementations in OpenCL are hard!

Parallel reduction with OpenCL

Potential Deadlock!
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kernel void reduce0(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 
  // do reduction in local memory 
  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 

  barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
  // write result for this work-group to global memory 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

1. Version: Unoptimised Implementation Parallel Reduction
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kernel void reduce1(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=1; s < get_local_size(0); s*= 2) { 
    // continuous work-items remain active 
    int index = 2 * s * tid; 
    if (index < get_local_size(0)) { 
      l_data[index] += l_data[index + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

2. Version: Avoid Divergent Branching
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kernel void reduce2(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  // process elements in different order 
  // requires commutativity 
  for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) { 
    if (tid < s) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

3. Version: Avoid Interleaved Addressing
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kernel void reduce3(global float* g_idata, global float* g_odata, 
                    unsigned int n, local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  // performs first addition during loading 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) { 
    if (tid < s) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; 
}

4. Version: Increase Computational Intensity per Work-Item



kernel void reduce4(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  # pragma unroll 1 
  for (unsigned int s=get_local_size(0)/2; s>32; s>>=1) { 
    if (tid < s) { l_data[tid] += l_data[tid + s]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 

  // this is not portable OpenCL code! 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

5. Version: Avoid Synchronisation inside a Warp



kernel void reduce5(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  if (i + get_local_size(0) < n) 
    l_data[tid] += g_idata[i+get_local_size(0)]; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

6. Version: Complete Loop Unrolling



kernel void reduce6(global float* g_idata, global float* g_odata, 
                    unsigned int n, local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = get_group_id(0) * (get_local_size(0)*2) 
                                   + get_local_id(0); 
  unsigned int gridSize = WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { l_data[tid] += g_idata[i]; 
                  if (i + WG_SIZE < n) 
                    l_data[tid] += g_idata[i+WG_SIZE]; 
                  i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

7. Version: Fully Optimised Implementation



• Optimising OpenCL is complex

• Understanding of target hardware required


• Program changes not obvious

• Is it worth it? …

kernel 
void reduce6(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local volatile float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i = 
    get_group_id(0) * (get_local_size(0)*2) 
                    + get_local_id(0); 
  unsigned int gridSize = 
    WG_SIZE * get_num_groups(0); 
  l_data[tid] = 0; 
  while (i < n) { 
    l_data[tid] += g_idata[i]; 
    if (i + WG_SIZE < n) 
      l_data[tid] += g_idata[i+WG_SIZE]; 
    i += gridSize; } 
  barrier(CLK_LOCAL_MEM_FENCE); 

  if (WG_SIZE >= 256) { 
    if (tid < 128) { 
      l_data[tid] += l_data[tid+128]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (WG_SIZE >= 128) { 
    if (tid <  64) { 
      l_data[tid] += l_data[tid+ 64]; } 
    barrier(CLK_LOCAL_MEM_FENCE); } 
  if (tid < 32) { 
    if (WG_SIZE >= 64) { 
      l_data[tid] += l_data[tid+32]; } 
    if (WG_SIZE >= 32) { 
      l_data[tid] += l_data[tid+16]; } 
    if (WG_SIZE >= 16) { 
      l_data[tid] += l_data[tid+ 8]; } 
    if (WG_SIZE >=  8) { 
      l_data[tid] += l_data[tid+ 4]; } 
    if (WG_SIZE >=  4) { 
      l_data[tid] += l_data[tid+ 2]; } 
    if (WG_SIZE >=  2) { 
      l_data[tid] += l_data[tid+ 1]; } } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

kernel 
void reduce0(global float* g_idata, 
             global float* g_odata, 
             unsigned int n, 
             local float* l_data) { 
  unsigned int tid = get_local_id(0); 
  unsigned int i   = get_global_id(0); 
  l_data[tid] = (i < n) ? g_idata[i] : 0; 
  barrier(CLK_LOCAL_MEM_FENCE); 

  for (unsigned int s=1; 
       s < get_local_size(0); s*= 2) { 
    if ((tid % (2*s)) == 0) { 
      l_data[tid] += l_data[tid + s]; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
  } 
  if (tid == 0) 
    g_odata[get_group_id(0)] = l_data[0]; 
}

Reduction Case Study Conclusions

Unoptimized Implementation Fully Optimized Implementation 16
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130 code generation using patterns
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(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results Nvidia

• … Yes! Optimising improves performance by a factor of 10!

• Optimising is important, but …
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• … unfortunately, optimisations in OpenCL are not portable!


• Challenge: how to achieving portable performance?

130 code generation using patterns
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High-Level IR

HardwareMulticore 
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Low-Level Program

Explore Optimizations
by rewriting

Code Generation 
[CGO'17]

[CASES'16]

DSL DSL DSL
Lift [ICFP’15]

[GPGPU’16]

Collaboration with Christophe Dubach (University of Edinburgh) and the Lift team
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reduce(    )
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dotproduct.lift

* +

Lift's High-level Primitives

map(λ rowA ↦ 
map(λ colB ↦ 
 dotProduct(rowA, colB) 

, transpose(B)) 
, A)

matrixMult.lift





Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)      

Implementation Choices as Rewrite Rules



Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)      
join(map(map(f),
  split(n, A)))

Implementation Choices as Rewrite Rules



Lift’s LOW LEVEL (OpenCL) Primitives

mapGlobal 
mapWorkgroup 
mapLocal

mapSeq 
reduceSeq

toLocal, toGlobal

mapVec, splitVec, joinVec

Work-items

Work-groups

Sequential implementations

Memory areas

Vectorisation

OpenCL conceptLift primitive



REWRITING into OPENCL

map(f, x) ↦ mapGlobal(f, x) | mapWorkgroup(f, x) | mapLocal(f, x) | mapSeq(f, x)

mapLocal(f, x) ↦ toLocal(mapLocal(f, x))  
mapLocal(f, x) ↦ toGlobal(mapLocal(f, x))

map(f, x)  ↦  joinVec(map(mapVec(f), splitVec(n, x))) 

Map rules:

Local / global memory:

Vectorization:



Divide & Conquer

Reusing existing Rewrite Rules

map(f, A)      

OptimizationS via Rewrite Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-

cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-

join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x ). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is
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used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map

primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce

primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map

primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map

(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map( vectorize(f) ) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .

2 map(� bcol .

3 reduce(+, 0) � map(⇥) � zip(arow, bcol)

4 , transpose(B))

5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .

7 map(� bs .

8 reduce(+, 0) � map(⇥) � zip(as, bs)

9 , toLocal(copy2D(tileB)))
10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12 ) � tile(m, k, transpose(B))

13 ) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .

3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .

5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .

7 map(� bs .

8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12 ) � zip(transpose(aBlocks), bs)

13 , toLocal(copy2D(tileB)))

14 , split(l, toLocal(copy2D(tileA))))

15 ,0, zip(rowOfTilesA, colOfTilesB))

16 ) � tile(m, k, transpose(B))

17 ) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.
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2D Tiling
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EVEN RANDOMISED SEARCH WORKS WELL!
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2 Primitives

1 Rewrite Rule

pad, slide

overlapped tiling

We added:

Stencil Computations in LIft

High-Level IR

[CGO’18] Best Paper Award



Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j <= 1; j ++) {   // ( a )
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;        
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }              
 B[ i ] = sum ; }

(a) access neighborhoods for every element

3-point-stencil.c
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(b) specify boundary handling

3-point-stencil.c



Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j <= 1; j ++) {   // ( a )
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;        // ( b ) 
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }              // ( c ) 
 B[ i ] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c



Decomposing Stencil Computations
for (int i = 0; i < N ; i ++) { 
    int sum = 0; 
    for ( int j = -1; j <= 1; j ++) {   // ( a )
        int pos = i + j; 
        pos = pos < 0 ? 0 : pos;        // ( b ) 
        pos = pos > N - 1 ? N - 1 : pos; 
        sum += A[ pos ]; }              // ( c ) 
 B[ i ] = sum ; }

(a) access neighborhoods for every element
(b) specify boundary handling
(c) apply stencil function to neighborhoods

3-point-stencil.c



Boundary Handling Using Pad 
pad ( reindexing ) pad ( constant )

clamp(i, n) = (i <  0) ? 0  :
             ((i >= n) ? n-1:i)

pad(1,1,clamp, [a,b,c,d]) =
    [a,a,b,c,d,d]

pad-reindexing.lift

constant(i, n) = C

pad(1,1,constant, [a,b,c,d]) =
    [C,a,b,c,d,C]

pad-constant.lift

C C



Neighborhood Creation using Slide 
size

step

slide(3,1,[a,b,c,d,e]) =

[[a,b,c],[b,c,d],[c,d,e]]

slide-example.lift

...



Applying Stencil function using Map 

map(nbh =>
  reduce(add, 0.0f, nbh))

sum-neighborhoods.lift



Putting it Together

def stencil1D =
 fun(A =>
  map(reduce(add, 0.0f),
   slide(3,1,
    pad(1,1,clamp,A))))

stencil1D.lift

slide(n,s)

pad(l,r,b) map

pad

slide

map(         )

reduce(    )

split(n)

join

zip



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

map2(sumNbh, slide2(3,1, pad2(1,1,clamp,input)))

Decompose to Re-Compose



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sumNbh, slide2(3,1, pad2(1,1,clamp,input)))



Multidimensional Boundary Handling using PAD 

pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

2



pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

Multidimensional Boundary Handling using PAD 2



pad2 = map(pad(l,r,b,pad(l,r,b,input)))

input

Multidimensional Boundary Handling using PAD 2



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map2(sum, slide2(3,1, pad2(1,1,clamp,input)))



Multidimensional stencil computations
are expressed as compositions of intuitive, generic 1D primitives

Decompose to Re-Compose

map3(sum, slide3(3,1, pad3(1,1,clamp,input)))



overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input)) 

u

v



overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input)) 
join(map(tile ⇒ 
  map(f, slide(3,1,tile)),
    slide(u,v,input)))

u

v



overlapped tiling rule

Overlapped Tiling as a rewrite rule

map(f, slide(3,1,input)) 
join(map(tile ⇒ 
  map(f, slide(3,1,tile)),
    slide(u,v,input)))

u

v
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Comparison with Hand-Optimized codes

Lift achieves the same performance 
as hand optimized code

higher is better



Comparison with polyhedral compilation

Lift outperforms state-of-the-art 
optimizing compilers 

higher is better



Towards an extensible and SMART compiler
• We want compilers that are easy to extend and we want to reuse optimisations 

• LLVM has done this for low-level C-like languages 

• We want the same for higher-level languages 

• We want to define a space of implementations and optimisations that is automatic searchable 
• We want a generic and hardware agnostic optimisation process 
• We want to have a principled way to inject domain and expert knowledge 

• Our approach: 
• High-level primitives describe algorithms & Low-level primitives describe hardware 
• Rewrite rules as the principled way to describe optimisations 
• Strategies as the principled way to inject domain and expert knowledge in the optimisation process



High-Level IR

HardwareMulticore 
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Low-Level Program

Explore Optimizations
by rewriting

Code Generation 
[CGO'17]

[CASES'16]

DSL DSL DSL
Lift 

All implementation and optimization 
decisions made via rewriting

Strategy preserving 
compilation

Single well-structured optimization space!



High-Level IR

HardwareMulticore 
CPU

Xeon
PhiGPU HPC

Mobile
KNC
KNL ...

Low-Level Program

Explore Optimizations
by rewriting

Code Generation 
[CGO'17]

[CASES'16]

DSL DSL DSL
Lift 

Strategy preserving compilation with DPIa

Functional

Imperative

•DPIA is a single language 
combining functional and 
imperative constructs 

•A formal translation turns 
functional into imperative 
programs

Collaboration with Bob Atkey (University of Strathclyde), Sam Lindley, and Christophe Dubach (University of Edinburgh)



Strategy preserving compilation with DPIa

• Functional primitives are translated 
into imperative constructs, e.g. 
map is translated into for 

•Translation guarantees deadlock and 
race freedom 

•Translation is deterministic: 
•No decisions are made regarding 
parallelization, memory allocation, 
etc.
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6.3 Translating Dot-product to OpenCL
We pick up the dot product example (2) given in Section 2 to show how a mild variation which makes use of the
OpenCL-speci�c primitives is translated to real OpenCL.�e example shown here uses themapWorkgroup
and mapLocal primitives together with the vectorisation primitives asVector and asScalar.
asScalar4 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x ) + a) 0 (split 8192 zs2)) zs1)

(split 8192 (zip (asVector4 xs) (asVector4 ys))))))

�is is the code used in the experimental evaluation (Section 7) and shows excellent performance on an Intel
CPUs compared to the reference MKL implementation. Vectorisation is crucial on Intel CPUs for achieving high
performance.
�is purely functional program with OpenCL-speci�c primitives is translated to the following imperative

program. �e translation largely follows the steps explained in Section 4 extended to cover the OpenCL-speci�c
primitives, as explained above.

parforWorkgroup (N /8192) (joinAcc (N /8192) 64 (asScalarAcc4 (N /128) out)) (� �id o.
parforLocal 64 o (� lid o.
newPrivate numh4i accum.

accum.1 := 0;
for 2048 (� i .
accum.1 := accum.2 +

(fst (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs ) (asVector4 �s ))) �id )) lid ) i )) ⇤
(snd (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs ) (asVector4 �s ))) �id )) lid ) i )) );

out := accum.2 ))

We generate the following OpenCL kernel where each line corresponds to a line of the imperative DPIA program.

1 kernel void KERNEL(global float *out , const global float *restrict xs,

2 const global float *restrict ys, int N) {

3 for (int g_id = get_group_id (0); g_id < N / 8192; g_id += get_num_groups (0)) {

4 for (int l_id = get_local_id (0); l_id < 64; l_id += get_local_size (0)) {

5 float4 accum;

6 accum = (float4 )(0.0, 0.0, 0.0, 0.0);

7 for (int i = 0; i < 2048; i += 1) {

8 accum = (accum +

9 (vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), xs) *

10 vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), ys))); }

11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
the program. In C these allocations can be performed with malloc on the heap or alloca on the stack. However,
OpenCL does not support dynamic memory allocation. Furthermore, OpenCL demands that all temporary bu�ers
in global and local memory – even with statically known size – have to be allocated prior to the kernel execution
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11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
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We pick up the dot product example (2) given in Section 2 to show how a mild variation which makes use of the
OpenCL-speci�c primitives is translated to real OpenCL.�e example shown here uses themapWorkgroup
and mapLocal primitives together with the vectorisation primitives asVector and asScalar.
asScalar4 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x ) + a) 0 (split 8192 zs2)) zs1)
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�is is the code used in the experimental evaluation (Section 7) and shows excellent performance on an Intel
CPUs compared to the reference MKL implementation. Vectorisation is crucial on Intel CPUs for achieving high
performance.
�is purely functional program with OpenCL-speci�c primitives is translated to the following imperative

program. �e translation largely follows the steps explained in Section 4 extended to cover the OpenCL-speci�c
primitives, as explained above.
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We generate the following OpenCL kernel where each line corresponds to a line of the imperative DPIA program.

1 kernel void KERNEL(global float *out , const global float *restrict xs ,

2 const global float *restrict ys, int N) {

3 for (int g_id = get_group_id (0); g_id < N / 8192; g_id += get_num_groups (0)) {

4 for (int l_id = get_local_id (0); l_id < 64; l_id += get_local_size (0)) {

5 float4 accum;

6 accum = (float4 )(0.0 , 0.0, 0.0, 0.0);

7 for (int i = 0; i < 2048; i += 1) {

8 accum = (accum +

9 (vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), xs) *

10 vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), ys))); }

11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
the program. In C these allocations can be performed with malloc on the heap or alloca on the stack. However,
OpenCL does not support dynamic memory allocation. Furthermore, OpenCL demands that all temporary bu�ers
in global and local memory – even with statically known size – have to be allocated prior to the kernel execution
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Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:3

2.1 Expressing Parallelisation Strategies in Functional Code
Here is an expression that describes the dot product of two vectors xs and ys:

reduce (+) 0 (map (�x . fst x ⇤ snd x ) (zip xs ys)) (1)

�is expression can be read in two ways. Firstly, read mathematically, it is a declarative speci�cation of the
dot product. Secondly, it can be read as a strategy for computing dot products. Reading right-to-le�, we have a
pipeline arrangement. Let us make the following assumptions: i) zip is not materialised (it only a�ects how later
parts of the pipeline read their input); ii) map is executed in parallel across the array; and iii) reduce is executed
sequentially. �en we can read this expression as embodying a naive “parallel map, sequential reduce” strategy.

Such a naive strategy is not always best. If we try to execute one parallel job per element of the input arrays,
then depending on the underlying architecture we will either fail (e.g., on GPUs with a �xed number of execution
units), or generate so many threads that coordination of them will dominate the runtime (e.g., on CPUs). �e
overall strategy of “parallel, then sequential” is likely not the most e�cient, either.

We can give a more re�ned strategy given information about the underlying architecture. For instance, GPUs
support nesting of parallelism by organising threads into groups, or work-items into work-groups, using OpenCL
terminology. If we know that the input is of size n ⇥ 128 ⇥ 2048, we can explicitly control how parallelism can
be mapped to the GPU hierarchy. �e following expression distributes the work among n groups of 128 local
threads, each processing 2048 elements in one go, by directly reducing over the multiplied pairs of elements:

reduce (+) 0 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x ) + a) 0 (split 2048 zs2)) zs1)
(split (2048 ⇤ 128) (zip xs ys)))))

(2)
Although this expression gives much more information about how to process the computation on the GPU, we
have not le� the functional paradigm, so we still have access to the straightforward mathematical reading of
this expression. We can use equational reasoning to prove that this is semantically equivalent to (1). Equational
reasoning can also be used to generate (2) from (1). Indeed Steuwer et al. (2015) have shown that stochastic search
techniques are e�ective at automatically discovering parallelisation strategies that match hand-coded ones.
However, even with a speci�ed parallelisation strategy we cannot execute this code directly. We need to

translate the functional code to an imperative language like OpenCL or CUDA in a way that preserves our chosen
strategy. �is paper presents a formal approach to solving this translation problem.

2.2 Strategy Preserving Translation to Imperative Code
What is the simplest way of converting a functional program to an imperative one? Starting with our zip-map-
reduce formulation of dot-product (1), we can turn it into an imperative program simply by assigning its result to
an output variable out:

out := reduce (+) 0 (map (�x . fst x ⇤ snd x ) (zip xs ys))

Unfortunately, this is not suitable for compilation targets like OpenCL or CUDA. While assignment statements
are the bread-and-bu�er of such languages, their expression languages certainly do not include such modern
amenities as higher ordermap and reduce functions. To translate these away, we introduce a novel acceptor-
passing translationALEM� (out). �e key idea is that for any expression E producing data of type � , the translation
ALEM� (out) is an imperative program that has the same e�ect as the assignment out := E and is free from
higher-order combinators. �is translation is mutually de�ned with a continuation passing translation CLEM� (C )
that takes a parameterised command C that will consume the output, instead of taking an output variable.
�e de�nition of the translation is given in Section 4.1. We introduce it here by example. Applied to our

dot-product code, our translation �rst replaces the reduce by a corresponding imperative combinator reduceI.
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Elevate: A language for expressing optimisation strategies 
Beta

Collaboration with Bastian Hagedorn (University of Münster)

•Motivation: Let programmers inject domain or 
expert knowledge into the optimisation process 

•Should be a proper language to allow programmers to 
express complex optimisation strategies 
• It should be impossible to build illegal strategies 
•Strategies should not be fix and built-in, but extensible 
•Strategies should compose to build larger out of smaller strategies 

• Inspired by: 
• Halide which separates programs into a functional description and a schedule 
• Strategy languages like Stratego designed for formal term rewriting
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Problems with Halide’s Scheduling “Language”
Beta

•Example MatMult:

Func prod(“prod"); 
RDom r(0, size); 
prod(x, y) += A(x, r) * B(r, y); 
out(x, y) = prod(x, y);

Functional description:

const int warp_size = 32; 
const int vec_size = 2; 
const int x_tile = 3; 
const int y_tile = 4; 
const int y_unroll = 8; 
const int r_unroll = 1; 

Var xi, yi, xio, xii, yii, xo, yo, x_pair, xiio, ty; 
RVar rxo, rxi; 

out.bound(x, 0, size) 
   .bound(y, 0, size) 
   .tile(x, y, xi, yi, x_tile * vec_size * warp_size, y_tile * y_unroll) 
   .split(yi, ty, yi, y_unroll) 
   .vectorize(xi, vec_size) 
   .split(xi, xio, xii, warp_size) 
   .reorder(xio, yi, xii, ty, x, y) 
   .unroll(xio) 
   .unroll(yi) 
   .gpu_blocks(x, y) 
   .gpu_threads(ty) 
   .gpu_lanes(xii); 
prod.store_in(MemoryType!::Register) 
    .compute_at(out, x) 
    .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp) 
    .split(y, ty, y, y_unroll) 
    .gpu_threads(ty) 
    .unroll(xi, vec_size) 
    .gpu_lanes(xi) 
    .unroll(xo) 
    .unroll(y) 
    .update() 
    .split(x, xo, xi, warp_size * vec_size, TailStrategy!::RoundUp) 
    .split(y, ty, y, y_unroll) 
    .gpu_threads(ty) 
    .unroll(xi, vec_size) 
    .gpu_lanes(xi) 
    .split(r.x, rxo, rxi, warp_size) 
    .unroll(rxi, r_unroll) 
    .reorder(xi, xo, y, rxi, ty, rxo) 
    .unroll(xo) 
    .unroll(y); 

Var Bx = B.in().args()[0], By = B.in().args()[1]; 
Var Ax = A.in().args()[0], Ay = A.in().args()[1]; 
B.in() 
    .compute_at(prod, ty) 
    .split(Bx, xo, xi, warp_size) 
    .gpu_lanes(xi) 
    .unroll(xo).unroll(By); 

A.in() 
    .compute_at(prod, rxo) 
    .vectorize(Ax, vec_size) 
    .split(Ax, xo, xi, warp_size) 
    .gpu_lanes(xi) 
    .unroll(xo).split(Ay, yo, yi, y_tile) 
    .gpu_threads(yi).unroll(yo); 

A.in().in().compute_at(prod, rxi) 
    .vectorize(Ax, vec_size) 
    .split(Ax, xo, xi, warp_size) 
    .gpu_lanes(xi) 
    .unroll(xo).unroll(Ay); 

set_alignment_and_bounds(A, size); 
set_alignment_and_bounds(B, size); 
set_alignment_and_bounds(out, size);

Schedule:

Schedule much harder to write and  
reason about then functional program!



Problems with Halide’s Scheduling “Language”
Beta

… 
out.bound(x, 0, size) 
   .bound(y, 0, size) 
   .tile(x, y, xi, yi, x_tile * vec_size * warp_size, y_tile * y_unroll) 
   .split(yi, ty, yi, y_unroll) 
   .vectorize(xi, vec_size) 
   .split(xi, xio, xii, warp_size) 
   .reorder(xio, yi, xii, ty, x, y) 
   .unroll(xio) 
   .unroll(yi) 
   .gpu_blocks(x, y) 
   .gpu_threads(ty) 
   .gpu_lanes(xii); 
…

Schedule:

What happens if the order of these are swapped? 
⇒ unclear semantics ⇒ unclear how to automatically generate schedules

Fixed set of optimisations ⇒ lack of extensibility



Optimisation Strategies from first principle
Beta

•A Strategy is a function: LiftExpr !-> LiftExpr 
•A rewrite rule is the simples form of a strategy: 

•We have an operator applyAt to apply a strategy at a particular location inside of a LiftExpr 

•Locations can be specified absolute, relative, or finding the first Lift pattern satisfying a predicate

def split-join-rule = (n: Int) !=> (expr: LiftExpr) !=> expr match { 
  case map(f, input) !=> join(map(map(f), split(n, input))) 
  case _ !=> throw Exception() 
}

def applyAt(strategy: Strategy, location: Location): Strategy



Composing Basic Strategies
Beta

•Strategies compose into (slightly) larger strategies:

def id = (expr: LiftExpr) !=> expr 

def leftChoice = (fst: Strategy, snd: Strategy) !=> { 
  (expr: LiftExpr) !=> try { fst(expr) } catch { case _ !=> snd(expr) } 
} 
 
def try = (s: Strategy) !=> leftChoise(s, id) 

def seq = (fst: Strategy, snd: Strategy) = snd(fst(expr)) 

def repeat = (s: Strategy) !=> try(seq(s, repeat(s))) 

def normalize = (s: Strategy) !=> repeat(applyAt(s, findFirst(isDefined(s)))) 



Building a Tiling Strategy
Beta

•Using these building blocks and standard functional programming patterns like fold 
we define the tiling optimisation strategy that is built-in in Halide

def tile = (n: Int) !=> (expr: LiftExpr) !=> { 
  seq( 
    fold( listPotentialRewrites( split-join-rule(n), expr ), (e, (s, l)) !=> 
      try(applyAt(s, l)(e)) ), 
    seq( 
      normalize( map-fission-rule !/* map(f o g) !=> map(f) o map(g) !*/ ), 
      interleaveDimensions( numberOfDimensions(expr) ) 
    ) 
  ) 
} 



Tiling in Three Steps
Beta

for (int i = 0; i < M; i!++) 
  for (int j = 0; j < N; j!++) 
    out[i][j] = f(in[i][j]);

for (int i = 0; i < M/iTile; i!++) 
  for (int ii = 0; ii < iTile; ii!++) 
    for (int j = 0; j < N/jTile; j!++) 
      for (int jj = 0; jj < jTile; jj!++) { 
        int posI = i * iTile + ii; 
        int posJ = j * jTile + jj; 
        out[posI][posJ] = f(in[posI][posJ]); 
      }

map(map(f), input)

join(map(map( 
  join(map(map(f), 
    split(jTile)))), 
      split(iTile)))

join( 
  map(map(join), 
    map(map(map(map(f))), 
      map(map(split(jTile)), 
        split(iTile)))))

1. Tile in every dimension: fold(…)

Lift Expression Pseudo C Code

2. Rewrite to normal form: normalize(…) 



Tiling in Three Steps
Beta

for (int i = 0; i < M/iTile; i!++) 
  for (int ii = 0; ii < iTile; ii!++) 
    for (int j = 0; j < N/jTile; j!++) 
      for (int jj = 0; jj < jTile; jj!++) { 
        int posI = i * iTile + ii; 
        int posJ = j * jTile + jj; 
        out[posI][posJ] = f(in[posI][posJ]); 
      }

join( 
  map(map(join), 
    map(map(map(map(f))), 
      map(map(split(jTile)), 
        split(iTile)))))

Lift Expression Pseudo C Code

for (int i = 0; i < M/iTile; i!++) 
  for (int j = 0; j < N/jTile; j!++) 
    for (int ii = 0; ii < iTile; ii!++) 
      for (int jj = 0; jj < jTile; jj!++) { 
        int posI = i * iTile + ii; 
        int posJ = j * jTile + jj; 
        out[posI][posJ] = f(in[posI][posJ]); 
      }

join( 
  map(map(join), 
    map(transpose, 
      map(map(map(map(f))), 
        map(transpose, 
          map(map(split(jTile)), 
            split(iTile)))))))

3. Rearrange dimensions: interleaveDimensions(…) 



Why is this Useful?
Beta

•We control different categories of rewrites with the same language 
•Algorithmic: 

• computational optimisations, like fusion or fission 
•data-layout transformations, like tiling 

•Hardware-specific: 
•memory optimisations, like usage of scratchpad/shared memory 
•parallelism mapping, like using workgroups vs. only global threads 

!=> principled way to understand and write optimisations 

•No built-in strategies: tiling strategy is defined in a library 
!=> easy to extend to other optimisations and domains 

• Easy to guarantee that strategies not fail (see try strategy) 
!=> amenable for automatic exploration of strategies
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