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Research and education in compiler
technology is more important than ever.

BY MARY HALL, DAVID PADUA, AND KESHAV PINGALI

Compiler
Research:
The Next
50 Years

WE PRESENT A perspective on the past contributions,
current status, and future directions of compiler
technology and make four main recommendations
in support of a vibrant compiler field in the years to
come. These recommendations were drawn from

discussions among presenters and attendees at a U.S.

National Science Foundation-sponsored Workshop
on Future Directions for Compiler Research and

exaggeration to say that compilers and
high-level languages are as central to
the information age as semiconductor
technology.

In the coming decade, 2010 to 2020,
compiler research will playa critical role
in addressing two of the major challeng-
es facing the overall computer field:

Cost of programming multicore pro-
cessors. While machine power will con-
tinue to grow impressively, increased
parallelism, rather than clock rate, will
be the driving force in computing in
the foreseeable future. This ongoing
shift toward parallel architectural para-
digms is one of the greatest challenges
for the microprocessor and software
industries. In 2005, Justin Rattner,
chief technology officer of Intel Cor-
poration, said, “We are at the cusp of a
transition to multicore, multithreaded
architectures, and we still have not
demonstrated the ease of program-
ming the move will require...”"

Security and reliability of complex
software systems. Software systems
are increasingly complex, making the
need to address defects and security
attacks more urgent. The profound
economic impact of program defects
was discussed in a 2002 study commis-
sioned by the U.S. Department of Com-
merce National Institute of Standards
and Technology (NIST), concluding
that program defects “are so preva-
lent and so detrimental that they cost
the U.S. economy an estimated $59.5
billion annually, or about 0.6% of the
gross domestic product.” The 2005
U.S. President’s Information Technol-
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Compilers of the past: Fortran

Th first commercial and complete compiler

1957 | _ | S ‘THE FORTRAN TRANSLATOR
Geneml Orgamzatwn of the System

' The FORTRAN translator consists of six successive

sections, as follows. - |

sy Section 1: Reads in and classifies statements. For'

J. W. BACKUS, R. J. BEEBER, S. BEST, R. GOLDBERG, L. M. HAIBT, H. L. HERRICK, arithmetic formulas, compiles the object (output) in-

R. A. NELSON, D. SAYRE, P. B. SHERIDAN, H. STERN, ~structions. For nonarithmetic statements including

I. ZILLER, R. A. HUGHES, axp R. NUTT | | input-output, does a part1al' compilation, and records

‘the remalnmg information in tables. All instructions
compiled in this section are in the COMPAIL file.

Section. 2: Compiles the instructions associated with
indexing, which result from DO statements and the oc-
currence of subscripted variables. These 1nstruct10ns
are placed in the COMPDO file.

‘Section 3: Merges the COMPAIL and COMPDO
files into a single file, meanwhile completing the compila-
tion of nonarithmetic statements begun in Section 1.
The object program is now complete, but assumes an
object machine with a large number of index registers.

Section 4: Carries out an analysis of the ﬂow of the
object program, to be used by Section 5. |

~ Section 5: Converts the object program to one e which
involves only the three index registers of the 704.

Section 6: Assembles the object program, producing
a relocatable binary program ready for running. Alsc
on demand produces the ob]ect program in SHARE
symbohc language o .

(Note: Section 3 is of internal 1mportance only, Sec-
tion 6 is a fairly conventional assembly program. These
sections will be treated only briefly in what follows.) |

THE FORTAN AUTOMATIC CODING SYSTEM

FOR TRA N Program

1) POLYF(X)=C0+4X s (C1+X » (C2+X cs))
2) DIMENSION A(1000), B(1000)

3) QMAX=—1.0 E20.

' 4) DO 5I=1,1000. “

5 'QMAX = MAXF(QMAX, POLYF(A(I)

| - +B(I))/P0LYF(A(I) B(I)))

' 6) STOP.

IBM 704 mainframe
7/
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Compilers of the present: LLVM

De-factor standard for industrial compiler infrastructure

Front end Middle end Back end

C/C+ —  Clang LLVM IR LLVM IR ARM
Fortran —=—yp Flang X86
Haskell — GHC X86-64

Julia — julia S

Rust —ly rustc LLVM

: : PowerPC

Swift — swift

CUDA —p  nvce Nvidia PTX
OpenCL =—p [IbOpenCL AMD GCN



Compilers of the present: LLVM

De-factor standard for industrial compiler infrastructure

C/ C++
Fortran
Haskell
Julia
Rust
Swift
CUDA
OpenCL

Front end Middle end Back end
—> Clang LLVM IR LLVM IR ARM
— Flang X86
GHC X80-64
julia RISC-V
e rustc LLVM
, PowerPC
—l swift
. e Nvidia PTX
- Many languages are compiled to many hardware targets AMD GCN

via a single low-level intermediate representation
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LLVM's Intermediate Representation

" LLVM s a Static Single
Assignment (SSA) based
representation that provides
type safety, low-level
operations, flexibility, and
the capability of
representing ‘all’ high-level
languages cleanly.

LLVM Language Reference
https://llvm.org/docs/LangRef.html

0O

int foo(int input) {
2 1nt X,VY,Zz;
X = 1lnput;
while (x > 1) {
y = x / 2;

1

%1:

%2 = allocai32, align 4

%3 = allocai32, align4

%4 = allocai32, align 4

%5 = allocai32, align4

store i32 %0, i32* %2, align 4
%6 = load 132, i32* %2, align 4
store 32 %6, i32* %3, align 4

br label %7

%7
7.

%8 = load i32, i32* %3, align 4
%9 = icmp sgti32 %8, 1
br i1 %9, label %10, label %30

%10:

10:

%11 =loadi32, i32*%
%12 =sdivi32 %11, 2
store 32 %12, 132* %4,

%13 = load 132, i32* %4, align 4
%14 = icmp sgt i32 %13, 3
br i1 %14, label %15, label %19

T F \
3, align 4

%30:
align 4 30:

ret i32 %31

%31 = load i32, i32*% %3, align 4

T

F

l

%15:

15:

%16 = load i32, i32* %3, align 4
%17 = load 132, i32*% %4, align 4
%18 = sub nsw i32 %16, %17
store i32 %18, i32* %3, align 4

br label %19

%19:
16:

store 32 %21, i32* %5,

%20 = load i32, i32* %3, align 4
%21 = sub nsw i32 %20, 4

%22 = load 32, i32* %5, align 4
%23 = icmp sgt i32 %22, 0
br il %23, label %24, label %27

align 4

F

T
%24

24:

%25 = load i32, i32* %3, align 4
%26 = sdivi32 %25, 2

store 132 %26, 132* %3, align 4

br label %27

%27:
27

%29 = su
store i32

%28 = load i32, i32* %5, align 4

br label %7

b nswi32 %28, 1
%29, 132* %5, align 4

CFG for 'foo' function
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LLVM's Intermediate Representation

" LLVM s a Static Single
Assignment (SSA) based ot
representation that provides S e

00

ore i32 %0, i 2 align 4
%6 = I d32 32 %2, align 4

%3, align 4
| %7

%8 = load i32, i32*% %3, align 4
%9 = lcmp sgti32 %E, 1
br i1 %9, label %10, label %30

f T F
%10:
10:
%11 = load 32, i32*% %3, align 4
“’1

%12 = sdiv i32 -':-"011, 2 %30:
e i32 %12, i32* | align 4 30:
3 | di32, 32 align 4 %31 = load 132, i32* %3, align 4
‘,'-"o mp sgt 32 13 3 ret i32 %31
br il . label %15, label %19

T F

l

while (x > 1) {

type safety, low-level - x /25

%15:

%16 = load

i32,i32% %3, align 4

. e ey | if (y > 3) = X - V;
operations, flexibility, and ~ - X 43 /
if (z > 0 = 2

the capability of = 21
representing ‘all” high-level L e
languages clenn!'

Programs are represented in a graph structure °

LLVM La to facilitate data-flow analysis allowing

https://llve— optimisations by re-arranging instructions.
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%17 = load 132, 132*% %4, align 4
%18 = sub nsw i32 %16, %17
store i32 %18, i32* %3, align 4
br label %19

%19:
19:
%20 = load i32, i32* %3, alig
‘!-'b2 wi32 9 20 4
ei329 2 i32% align
22 loa 32, i32 5 alig
= lcmp sgt i3 .
%23, label % I |
T F

32 %3, align 4
%25, 2

32*% %3, align 4

N\

%27:
27

%28 = load i32, i32* %5, align 4
0L IC /

b w32 ‘-028, 1
32 29 i32* %5, align 4

CFG for 'foo' fu
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Compilers of the future: ???

One important trend: higher-level intermediate representations

Swift Intermediate Language
A high level IR to complement LLVM ‘

Joe Groff and Chris Lattner

@

[ NON | ® Introducing MIR | Rust Blog X +

& Cc & blog.rust-lang.org/2016/04/19/MIR.htm

Rust Blog Rust Install Learn Tools Governance

Apr. 19, 2016 - Niko Matsakis

We are in the final stages of a grand transformation on the Rust compiler internals. Over
the past year or so, we have been steadily working on a plan to change our internal
compiler pipeline, as shown here:

Today Tomorrow
Rust Source Rust Source
v Parsing and Desugaring v Parsing and Desugaring
HIR HIR
Type checking \ Type checking
MIR
Borrow checking
Borrow checking
Translation Obptimization
Y y pumizal
LLVM IR LLVM IR
Optimization Optimization

<
-«

Machine Code Machine Code

I
I
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® <> Google Developers Blog: XLA X -+

C & developers.googleblog.com/2017/03/xla-tensorflow-compiled.html ¥ N e

Google Developers

Blog of our latest news, updates, and stories for developers

XLA - TensorFlow, compiled

O\
Mar
s ) . . Label v
By the XLA team within Google, in collaboration with the TensorFlow team O Labels
One of the design goals and core strengths of TensorFlow is its BB Achive v
flexibility. TensorFlow was designed to be a flexible and extensible
system for defining arbitrary data flow graphs and executing them &ls
efficiently in a distributed manner using heterogenous computing
devices (such as CPUs and GPUs). Google Developers
<
S . . ) YouTube [N
But flexibility is often at odds with performance. While TensorFlow aims :
to let you define any kind of data flow graph, it's challenging to make all . Follow Ogoogleders
graphs execute efficiently because TensorFlow optimizes each op
separately. When an op with an efficient implementation exists or when )
Visit Goo Developers for docs,

each op is a relatively heavyweight operation, all is well; otherwise, the
user can still compose this op out of lower-level ops, but this
composition is not guaranteed to run in the most efficient way.

event info, and more.

This is why we've developed XLA (Accelerated Linear Algebra), a
compiler for TensorFlow. XLA uses JIT compilation techniques to
analyze the TensorFlow graph created by the user at runtime, specialize
it for the actual runtime dimensions and types, fuse multiple ops
together and emit efficient native machine code for them - for devices
like CPUs, GPUs and custom accelerators (e.g. Google's TPU).

Fusing composable ops for increased performance
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So what makes a “good” Intermediate Representation?

q l.l E I.I E Intermediate Representation

The increasing significance of intermediate representations in compilers
Fred Chow

Program compilation is a complicated process. A compiler is a software program that translates
a high-level source language program into a form ready to execute on a computer. Early in the
evolution of compilers, designers introduced IRs (intermediate representations, also commonly called
intermediate languages) to manage the complexity of the compilation process. The use of an IR as
the compiler’s internal representation of the program enables the compiler to be broken up into
multiple phases and components, thus benefiting from modularity.

An IR is any data structure that can represent the program without loss of information so that
its execution can be conducted accurately. It serves as the common interface among the compiler
components. Since its use is internal to a compiler, each compiler is free to define the form and
details of its IR, and its specification needs to be known only to the compiler writers. Its existence

can be transient during the compilation process, or it can be output and handled as text or binary
files.

THE IMPORTANCE OF IRS TO COMPILERS
An IR should be general so that it is capable of representing programs translated from multiple
languages. Compiler writers traditionally refer to the semantic content of programming languages

FIGURE

The Different Levels of Program Representations
14
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So what makes a “good” Intermediate Representation?

IR DESIGN ATTRIBUTES

In conclusion, here is a summary of the important design attributes of IRs and how they pertain to
the two visions discussed here. The first five attributes are shared by both visions.

e Completeness. The IR must provide clean representation of all programming language constructs,
concepts, and abstractions for accurate execution on computing devices. A good test of this

attribute is whether it is easily translatable both to and from popular IRs in use today for various
programming languages.

e Semantic gap. The semantic gap between the source languages and the IR must be large enough
that it is not possible to recover the original source program, in order to protect intellectual property
rights. This implies the level of the IR must be low.

e Hardware neutrality. The IR must not have built-in assumptions of any special hardware
characteristic. Any execution model apparent in the IR should be a reflection of the programming
language and not the hardware platform. This will ensure it can be compiled to the widest range of
machines, and implies that the level of the IR cannot be too low.

e Manually programmable. Programming in IRs is similar to assembly programming. This gives
programmers the choice to hand-optimize their code. It is also a convenient feature that helps
compiler writers during compiler development. A higher-level IR is usually easier to program.

e Extensibility. As programming languages continue to evolve, there will be demands to support new
programming paradigms. The IR definition should provide room for extensions without breaking
compatibility with earlier versions.

15
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In conclusion, here is a summary of the important design attributes of IRs and how they pertain to
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e Manually programmable. Programming in IRs is similar to assembly programming. This gives
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programming paradigms. The IR definition should provide room for extensions without breaking
compatibility with earlier versions.
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But what about compiling functional languages?

e Functional languages use versions of A-calculus as intermediate language
* Haskell uses an intermediate language called Core | desuger

 |ts based on the A-calculus variation System F STG

System F = simply typed A-calculus + polymorphism SNy
NCG /\HW\GM

http:/ /blog.ezyang.com/2014/01/so-you-want-
to-add-a-new-concurrency-primitive-to-gh

17



Haskell Core

Haskell
map :: (a -> b) -> [a] =-> [Db]
map _ [] 1

[
map £ (x:xs) f x : map £ xs

Core
map :: forall a b. (a -> b) -> [a] -> [b]
map =
\ (@ a) (@ b) (f :: a ->Db) (xs :: [a]) ->
case xs of  {
[1] -> GHC.Types.[] @ b;

: Yy yS -> GHC.Types.: @ b (f y) (map @ a @ b £ ys)

From http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)

18
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Haskell Core

Haskell
map :: (a -> b) -> [a] -> [Db]
map _ [] = [1
map £ (x:xs) = £ x : map f xs
Core
map :: forall a b. (a -> b) -> [a] -> [b]
map =
\ (@ a) (@b) (f :: a ->b) (xs :: [a]) ->
case xs of  {
[1] -> GHC.Types.[] @ b;
: Yy yS -> GHC.Types.: @ b (f y) (map @ a @ b £ ys)
}

Programs are represented in the A-calculus to
facilitate optimizations by rewriting.

From http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)

19



So who is right? Functional PL or Imperative “Compiler” people?



Editor: Philip Wadler, Bell Laboratories, Lucent Technologies; wadler@ research.bell-labs.com

SSA is Functional Programming

Andrew W. Appel

Static Single-Assignment (SSA) form is an intermedi-
ate language designed to make optimization clean and
efficient for imperative-language (Fortran, C) compil-
ers. Lambda-calculus is an intermediate language that
makes optimization clean and efficient for functional-
language (Scheme, ML, Haskell) compilers. The SSA
community draws pictures of graphs with basic blocks
and flow edges, and the functional-language community
writes lexically nested functions, but (as Richard Kelsey
recently pointed out [9]) they're both doing exactly the
same thing in different notation.

SSA form. Many dataflow analyses need to find the
use-sites of each defined variable or the definition-sites
of each variable used in an expression. The def-use chain

able name for each assignment to the variable. For ex-
ample, we convert the program at left into the single-
assignment program at right. At left, a use of ¢ at any
point refers to the most recent definition, so we know
where to use a;, az, Or as, in the program at right.

For a program with no jumps this is easy. But where
two control-flow edges join together, carrying different
values of some variable 7, we must somehow merge the
two values, In SSA form this is done by a notational
trick, the ¢-function. In some node with two in-edges,
the expression ¢(a;, az) has the value a; if we reached
this node on the first in-edge, and ag if we came in on the
second in-edge.

Let’s use the following program to illustrate:

is a data structure that makes this efficient: for each state- i1
ment in the flow graph, the compiler can keep a list of j1
pointers to all the use sites of variables defined there, and kL« 0
a list of pointers to all definition sites of the variables used 21 while k& < 100

there. But when a variable has N definitions and M uses,

if j < 20

So who is right? Functional PL or Imperative “Compiler” people?

Maybe both?
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Static Single-Assignment (SSA) form is an intermedi-
ate language designed to make optimization clean and
efficient for imperative-language (Fortran, C) compil-
ers. Lambda-calculus is an intermediate language that
makes optimization clean and efficient for functional-
language (Scheme, ML, Haskell) compilers. The SSA
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and flow edges, and the functional-language community
writes lexically nested functions, but (as Richard Kelsey
recently pointed out [9]) they’re both doing exactly the
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Outline of Lectures over the week

* Tuesday: Functional Intermediate Representations
« Lambda Calculus and the Lambda Cube

 Implementation Strategies for System F (ADTs across different PLs)
- Implementation Strategies for Binders
« Compiler transformations as rewrite rules

* Wednesday: Imperative Intermediate Representations
Foundations of Single Static Assignment (SSA)
LLVM IR
Control-Flow Graphs
Data-flow analysis

* Thursday: Domain-Specific Intermediate Representations
MLIR — a compiler infrastructure for building domain-specific intermediate representations
Dataflow graphs — TensorFlow
Pattern-based (and functional) — RISE
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