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WE PRESENT A perspective on the past contributions, 
current status, and future directions of compiler 
technology and make four main recommendations 
in support of a vibrant compiler field in the years to 
come. These recommendations were drawn from 
discussions among presenters and attendees at a U.S. 
National Science Foundation-sponsored Workshop 
on Future Directions for Compiler Research and 
Education in 2007. As 2007 was the 50th anniversary 
of IBM’s release of the first optimizing compiler, it 
was a particularly appropriate year to take stock of the 
status of compiler technology and discuss its future 
over the next 50 years. Today, compilers and high-
level languages are the foundation of the complex and 
ubiquitous software infrastructure that undergirds the 
global economy. The powerful and elegant technology 
in compilers has also been invaluable in other 
domains (such as hardware synthesis). It is no 

exaggeration to say that compilers and 
high-level languages are as central to 
the information age as semiconductor 
technology. 

In the coming decade, 2010 to 2020, 
compiler research will play a critical role 
in addressing two of the major challeng-
es facing the overall computer field: 

Cost of programming multicore pro-
cessors. While machine power will con-
tinue to grow impressively, increased 
parallelism, rather than clock rate, will 
be the driving force in computing in 
the foreseeable future. This ongoing 
shift toward parallel architectural para-
digms is one of the greatest challenges 
for the microprocessor and software 
industries. In 2005, Justin Rattner, 
chief technology officer of Intel Cor-
poration, said, “We are at the cusp of a 
transition to multicore, multithreaded 
architectures, and we still have not 
demonstrated the ease of program-
ming the move will require…”3 

Security and reliability of complex 
software systems. Software systems 
are increasingly complex, making the 
need to address defects and security 
attacks more urgent. The profound 
economic impact of program defects 
was discussed in a 2002 study commis-
sioned by the U.S. Department of Com-
merce National Institute of Standards 
and Technology (NIST), concluding 
that program defects “are so preva-
lent and so detrimental that they cost 
the U.S. economy an estimated $59.5 
billion annually, or about 0.6% of the 
gross domestic product.” The 2005 
U.S. President’s Information Technol-
ogy Advisory Committee (PITAC) report 
Cyber Security: A Crisis of Prioritization 
included secure software engineer-
ing and software assurance among its 
top 10 research priorities, concluding 
with: “Commonly used software engi-
neering practices permit dangerous 
errors, such as improper handling of 
buffer overflows, which enable hun-
dreds of attack programs to compro-
mise millions of computers every year. 
In the future, the Nation [the U.S.] may 
face even more challenging problems 
as adversaries—both foreign and do-
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When the field of compiling began in the late 1950s, 
its focus was limited to the translation of high-level 
language programs into machine code and to the 
optimisation of space and time requirements of 
programs. […] 
 
The compiler field is increasingly intertwined with 
other disciplines, including computer architecture, 
programming languages, formal methods, software 
engineering, and computer security.
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THE FORTRAN LANGUAGE 
The FORTRAN language is most easily described 

by reviewing some examples. 

Arithmetic Statements 
Example 1 : Compute : 

- (B/2) 4- d(B/2) - AC . 
root = 

FORTRAN Program : 

ROOT 
= ( - (B/2.0) + SQRTF((B/2.0) * * 2 - A * C))/A. 

Notice that  the desired erogram is a single FOR- 
TRAN statement, an arithmetic formula. I ts  meaning 
is: "Evaluate the expression on the right of the = sign 
and make this the value of the variable on the left.?' 
The symbol * denotes multiplication and * * denotes 
exponentiation (i.e., A * * B means AB). The program 
which is generated from this statement effects the 
computation in floating point arithmetic, avoids com- 
puting (B/2.0) twice and computes (B/2.0) * * 2 by a 
multiplication rather than by an exponentiation routine. 
[Had (B/2.O) * * 2.01 appeared instead, an exponentia- 
tion routine would necessarily be used, requiring more 
time than the multiplication.] 

The programmer can refer to  quantities in both 
floating point and integer form. Integer quantities 

\ a re  somewhat restricted in their use and serve primarily 
a s  subscripts or exponents. Integer constants are written 
without a decimal point. Example: 2 (integer form) vs 
2.0 (floating point form). Integer variables begin with 
I ,  J, K, L, M, or N. Any meaningful arithmetic expres- 
sion may appear on the right-hand side of an arithmetic 
statement, provided the following restriction is ob- 
served: an  integer quantity can appear in a floating- 
point expression only as a subscript or as  an exponent 
or as  the argument of certain functions. The functions 
which the programmer may refer to  are limited only 
by  those available on the library tape a t  the time, such 
a s  SQRTF, plus those simple functions which he has 
defined for the given problem by means of function 
statements. An example will serve to  describe the latter. 

Function Statements 
Example 2:  Define a function of three variables to be 

used throughout a given problem, as follows: f 

Function statements must precede the rest of the pro- 
gram. They are composed of tho desired function name 
(ending in F) followed by any desired arguments which 
appear in the arithmetic expression on the right of the 
= sign. The definition of a function may employ any 

previously defined functions. Having defined ROOTF 
as above, the programmer may apply i t  to  any set of 
arguments in any subsequent arithmetic statements. For 
example, a later arithmetic statement might be 

THETA = 1.0 + GAMMA * ROOTF(P1, 3.2 * Y + 14.0, 7.63). 

DO Statements, DIMENSION Statements, and Sub- 
scripted Variables 

Examgle 3: Set Qm,, equal to  the largest quantity 
P(ai+bi)/P(ai- bi) for some i between 1 and 1000 
.where P(x) = C ~ + ~ ~ X + C ~ X ~ + C ~ X ~ .  

FORTRAN Program: 
1) POLYF(X) =CO+X * ( C l + X  * (C2+X * C3)). 
2) DIMENSION A(1000), B(1000). 
3) QMAX = - 1.0 E20. 
4) DO 5 I =1, 1000. 
5) QMAX = MAXF(QMAX, POLYF(A(1) 

+B(I))/POLYF(A(I) -B(I))). 
6 )  STOP. 

The program above is complete except for input and 
output statements which will be described later. The 
first statement is not executed; it  defines the desired 
polynomial (in factored form for efficient output pro- 
gram). Similarly, the second statement merely informs 
the executive routine that  the vectors A and B each have 
1000 elements. Statement 3 assigns a large negative 
initial value to  QMAX, - 1.0 X 1020, using a special 
concise form for writing floating-point constants. State- 
ment 4 says "DO the following sequence of statements 
down to and including the statement numbered 5 for 
successive values of I from 1 to  1000." In this case 
there is only one statement 5 to  be repeated. I t  is exe- 
cuted 1000 times; the first time reference is made to  
A(l) and B(1), the second time to  A(2) and B(2), etc. 
After the 1000th execution of statement 5, statement 
6-STOP-is finally encountered. In statement 5, 
the function MAXF appears. MAXF may have two 
or more arguments and its value, by definition, is the 
value of its largest argument. Thus on each repetition 
of statement 5 the old value of QMAX is replaced by 
itself or by the value of POLY F(A(1) +B (I)) /POLYF 
(A(1) - B (I)), whichever is larger. The value of QMAX 
after the 1000th repetition is therefore the desired 
maximum. 

Example 4: Multiply the n Xlr  matrix 520)  by 
its transpose, obtaining the product elements on or be- 
low the main diagonal by the relation 

cis j  = 5 a i . k e  a j , k  (for j < i) 
k-1 

and the remaining elements by the relation 

Backus et al. : The F O R T R A N  auto ma ti ti^. Coding System 191 

Ach execution of PRINT causes a single line to  be 
printed with ARG, SUM, VALUE printed in the first 
three of the five fields described by FORMAT state- 
ment 1. 

The IF' statement says " I f  A RG - A L P H A  (I)  is 
negative go tostatement 4, if it  3s zero go to  statement 
3, and if it  is' 'positive go to 3." Thus the repetition 
of the two Statements controlled by the DO consists 
normally of computing ARG - ALPHA(1) , finding i t  
zero or positive, and going to statement 3 followed by 
the next repetition. H~wever ,  when I has been in- 
creased to  the extent that  the first ALPHA exceeding 
ARG is encountered, control will pass to  statement 4: 
Note that  this statement does not belong to  the se- 
quence controlled by the DO. In such cases, the repeti- 
tion specified by the DO is terminated and the value of 
the index (in this ease I) is preserved. Thus if the first 
ALPHA exceeding ARG were ALPHA (20), then RHO 
(19) would be obtaihed in statement 4. 

The GO T O  statement, of course, passes control to 
statement 2,  which initiates reading the 11 cards for the 
next case. The process will continue until there are no 
more cards in the reader. The above program is entirely 
complete. When punched in cards as shown, and comd 
piled, the jcrandlator will produce a ready-to-run 704 
program which will perform the job specified. 

Other Types of F O R T R A N  Statements 
In  the above examples the following types of FOR- 

TRAN statements have been exhibited. 
Arithmetic statements 
Function statements 
DO statements 
I F  statements 
GO TO statements 
READ statements 
PRINT statements 
STOP' statements 
DIM ~ N S I O N  statements 
FORMAT statements. 

The explanations accompanying each example have 
attempted to  show some of the possible applications and 
variations of these statements. I t  is felt that  these 
examples give a representative picture of the FOR- 
TRAN language; however, many of its features have 
had to  be omitted. There are 23 other types of state- 
ments in the language, many of them completely 
analogous to  some of those described here. They pro- 
vide facilities for referring to  other input-output' and 
auxiliary storage devices (tapes, drums, and card 
punch), for specifying preset and computed branching 
of control, for detecting various conditions which may 
arise such as an  at tempt to  divide by zero, and for pro- 
viding various information about a program to the 
translator. A complete description of the language is to 
be found in Programmer's Reference Manual, the FOR- 
T R A  N Automatic Coding System for the IB M 704. 

Preparation of a Program for Translation 
The translator accepts statements punched one per 

card (continuation cards may be used for very long 
statements). There is a separate key on the keypunch- 
ing device for each character used in FORTRAN state- 
ments and each character is represented in the card by 
several holes in a single column of the card. Five 
columns are reserved for a statement number (if pres- 
ent) and 66 are available for the statement. Keyguhch- 
ing a FORTRAN program is therefore a prockss similar 

. , to that  of typing the program. 

Translation 
The deck of cards obtained by keypunching may 

then be put in the card reader of a 704 equipped'with 
the translator program. When the load buttori is Sressed 
one gets either 1) a list of input statements which fail 
to  conform to specifications of the FORTRAN language 
accompanied by remarks which indicate the type of 
error in each case; 2) a deck of binary cards representing 
the desired 704 program, 3) a binary tape of the program 
which can either be preserved or loaded and executed 
immediately after translation is complete, or 4) a tape 
containing the output program in symbolic form suitable 
for alteration and later assembly. (Some of these out- , 

puts may be unavailable a t  the time of publication.) 

THE FORTRAN TRANSLATOR 
General Organization of the System 

The FORTRAN translator consists of six successive 
sections, as follows. 

Sectiorc 1: Reads in and classifies statements. For 
arithmetic formulas, compiles the object (output) in- 
structions. For nonarithmetic statements including 
input-output, does a partial compilation, and records 
the remaining information in tables. All instructions 
compiled in this section are in the COMPAIL file. 

Section 2: Compiles the instructions associated with 
indexing, which result from DO statements and the oe- 
currence of subscripted variables, These instructions 
are placed in the COMPDO file, 

Section 3: Merges the COMPAIL and COMPDO 
files into a single file, meanwhile completing the compila- 
tion of nonarithmetic statements begun in Section 1. 
The object program is now complete, but assumes an 
object machine with a large number of index registers. 

Section 4: Carries out an  analysis of the flow of the 
object program, to  be used by Section 5. 

Section 9: Converts the object program to  one which 
involves only the three index registers of the 704. 

Section 6:  Assembles the object program, producing 
a relocatable binary program ready for running. Alsc 
on demand produces the object program in SHARE 
symbolic language. 

(Note: Section 3 is of internal importance only; Sec- . 
tion 6 is a fairly conventional assembly program. These 
sections will be treated only briefly in what follows.) 

1957 
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. , to that  of typing the program. 

Translation 
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THE FORTRAN TRANSLATOR 
General Organization of the System 

The FORTRAN translator consists of six successive 
sections, as follows. 
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Section 9: Converts the object program to  one which 
involves only the three index registers of the 704. 

Section 6:  Assembles the object program, producing 
a relocatable binary program ready for running. Alsc 
on demand produces the object program in SHARE 
symbolic language. 

(Note: Section 3 is of internal importance only; Sec- . 
tion 6 is a fairly conventional assembly program. These 
sections will be treated only briefly in what follows.) 

1957 
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Compilers of the present: LLVM
De-factor standard for industrial compiler infrastructure
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Many languages are compiled to many hardware targets 
via a single low-level intermediate representation
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LLVM’s Intermediate Representation

" LLVM is a Static Single 
Assignment (SSA) based 
representation that provides 
type safety, low-level 
operations, flexibility, and 
the capability of 
representing ‘all’ high-level 
languages cleanly.

LLVM Language Reference 
https://llvm.org/docs/LangRef.html

https://llvm.org/docs/LangRef.html
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LLVM’s Intermediate Representation

" LLVM is a Static Single 
Assignment (SSA) based 
representation that provides 
type safety, low-level 
operations, flexibility, and 
the capability of 
representing ‘all’ high-level 
languages cleanly.

LLVM Language Reference 
https://llvm.org/docs/LangRef.html

Programs are represented in a graph structure 
to facilitate data-flow analysis allowing 

optimisations by re-arranging instructions. 

https://llvm.org/docs/LangRef.html


Compilers of the future: ???
One important trend: higher-level intermediate representations
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Swift Intermediate Language
A high level IR to complement LLVM 

Joe Groff and Chris Lattner

https://llvm.org/devmtg/2015-10/slides/GroffLattner-SILHighLevelIR.pdf
https://blog.rust-lang.org/2016/04/19/MIR.html
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Intermediate Representation

The increasing signi!cance of intermediate representations in compilers

Fred Chow

Program compilation is a complicated process. A compiler is a software program that translates 
a high-level source language program into a form ready to execute on a computer. Early in the 
evolution of compilers, designers introduced IRs (intermediate representations, also commonly called 
intermediate languages) to manage the complexity of the compilation process. The use of an IR as 
the compiler’s internal representation of the program enables the compiler to be broken up into 
multiple phases and components, thus benefiting from modularity. 

An IR is any data structure that can represent the program without loss of information so that 
its execution can be conducted accurately. It serves as the common interface among the compiler 
components. Since its use is internal to a compiler, each compiler is free to define the form and 
details of its IR, and its specification needs to be known only to the compiler writers. Its existence 
can be transient during the compilation process, or it can be output and handled as text or binary 
files.

THE IMPORTANCE OF IRS TO COMPILERS 
An IR should be general so that it is capable of representing programs translated from multiple 
languages. Compiler writers traditionally refer to the semantic content of programming languages 

source
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first goal may not fulfill the needs of the second. It is also hard to say at this point whether one well-
defined IR standard can fulfill both purposes at the same time.

The HSA (Heterogeneous System Architecture) Foundation was formed in 2012 with the charter 
of making programming heterogeneous devices dramatically easier by putting forth royalty-free 
specifications and open source software.5 Its members intend to build a heterogeneous software 
ecosystem rooted in open royalty-free industry standards. 

Recently, the foundation put forth a specification for HSAIL (HSA Intermediate Language), which 
is positioned as the ISA of an HSAIL virtual machine for any computing device that plans to adhere 
to the standard. HSAIL is quite low level, somewhat analogous to the assembly language of a RISC 
machine. It assumes a specific program and memory model catering to heterogeneous platforms 
where multiple ISAs exist, with one specified as the host. It also specifies a model of parallel 
processing as part of the virtual machine. 

Although HSAIL is aligned with the vision of enabling a software ecosystem based on a virtual 
machine, its requirements are too strong and lack generality, and thus will limit its applicability 
to the specific segment of the computing industry that it targets. Though HSAIL is meant as the 
compilation target for compiler developers, it is unlikely that any compiler will adopt HSAIL as an IR 
during compilation because of the lack of simplicity in the HSAIL virtual machine. It is a step in the 
right direction, however.

IR DESIGN ATTRIBUTES
In conclusion, here is a summary of the important design attributes of IRs and how they pertain to 
the two visions discussed here. The first five attributes are shared by both visions.
UÊCompleteness. The IR must provide clean representation of all programming language constructs, 
concepts, and abstractions for accurate execution on computing devices. A good test of this 
attribute is whether it is easily translatable both to and from popular IRs in use today for various 
programming languages.
UÊSemantic gap. The semantic gap between the source languages and the IR must be large enough 
that it is not possible to recover the original source program, in order to protect intellectual property 
rights. This implies the level of the IR must be low.
UÊHardware neutrality. The IR must not have built-in assumptions of any special hardware 
characteristic. Any execution model apparent in the IR should be a reflection of the programming 
language and not the hardware platform.  This will ensure it can be compiled to the widest range of 
machines, and implies that the level of the IR cannot be too low.
UÊManually programmable. Programming in IRs is similar to assembly programming. This gives 
programmers the choice to hand-optimize their code. It is also a convenient feature that helps 
compiler writers during compiler development. A higher-level IR is usually easier to program.
UÊExtensibility. As programming languages continue to evolve, there will be demands to support new 
programming paradigms. The IR definition should provide room for extensions without breaking 
compatibility with earlier versions.

From the compiler’s perspective, there are three more attributes that are important considerations 
for the IR to be used as a program representation during compilation:
UÊSimplicity. The IR should have as few constructs as possible while remaining capable of 
representing all computations translated from programming languages. Compilers often perform 
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But what about compiling functional languages?

• Functional languages use versions of λ-calculus as intermediate language 

• Haskell uses an intermediate language called Core 

• Its based on the λ-calculus variation System F 
 
System F == simply typed λ-calculus + polymorphism

17

http://blog.ezyang.com/2014/01/so-you-want-
to-add-a-new-concurrency-primitive-to-ghc/



Haskell Core

From http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)

map :: forall a b. (a -> b) -> [a] -> [b]
map =
  \ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
    case xs of _ {
      []     -> GHC.Types.[] @ b;
      : y ys -> GHC.Types.: @ b (f y) (map @ a @ b f ys)
    }


map :: (a -> b) -> [a] -> [b]
map _ []     = []
map f (x:xs) = f x : map f xs

18

Haskell

Core

http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)


Haskell Core

From http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)

map :: forall a b. (a -> b) -> [a] -> [b]
map =
  \ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
    case xs of _ {
      []     -> GHC.Types.[] @ b;
      : y ys -> GHC.Types.: @ b (f y) (map @ a @ b f ys)
    }


map :: (a -> b) -> [a] -> [b]
map _ []     = []
map f (x:xs) = f x : map f xs
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Haskell

Core

Programs are represented in the λ-calculus to 
facilitate optimizations by rewriting.



So who is right? Functional  PL or Imperative “Compiler” people?
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So who is right? Functional  PL or Imperative “Compiler” people?

Functionoi 
Editor: Philip Wadler, Bell Laboratories, Lucent Technologies; wadler@ research.beU-labs.com 

SSA is Functional Programming 
Andrew W. Appel 

Static Single-Assignment (SSA) form is an intermedi- 
ate language designed to make optimization clean and 
efficient for imperative-language (Fortran, C) compil- 
ers. Lambda-calculus is an intermediate language that 
makes optimization clean and efficient for functional- 
language (Scheme, ML, Haskell) compilers. The SSA 
community draws pictures of graphs with basic blocks 
and flow edges, and the functional-language community 
writes lexically nested functions, but (as Richard Kelsey 
recently pointed out [9]) they're both doing exactly the 
same thing in different notation. 

SSA form. Many dataflow analyses need to find the 
use-sites of each defined variable or the definition-sites 
of each variable used in an expression. The def-use chain 
is a data structure that makes this efficient: for each state- 
ment in the flow graph, the compiler can keep a list of 
pointers to all the use sites of variables defined there, and 
a list of pointers to all definition sites of the variables used 
there. But when a variable has N definitions and M uses, 
we might need N • M pointers to connect them. 

The designers of SSA form were trying to make an im- 
proved form of def-use chains that didn't suffer from this 
problem. Also, they were concerned with "getting the 
right number of names:" the programmer might use some 
variable i for several unrelated purposes in the same pro- 
cedure-  for example, as the loop counter for two different 
loops - and we can do more optimization if we split i into 
different variables il and i2. 

In SSA, each variable in the program has only one defi- 
nition - it is assigned to only once. The assignment might 
be in a loop, which is executed many times; so single- 
assignment is a static property of the program text, not a 
dynamic property of program execution. 

a 4- x + y  al 4- x T y  
b 4- a - 1  bl 4- a ~ - i  
a ~ y + b a2 4- y + b~ 
b 4- x . 4  b2 4- x . 4  
a 4- a + b  a3 4- a 2 + b 2  

To achieve single-assignment, we make up a new vari- 

able name for each assignment to the variable. For ex- 
ample, we convert the program at left into the single- 
assignment program at right. At left, a use of a at any 
point refers to the most recent definition, so we know 
where to use al,  a2, or a3, in the program at right. 

For a program with no jumps this is easy. But where 
two control-flow edges join together, carrying different 
values of some variable i, we must somehow merge the 
two values. In SSA form this is done by a notational 
trick, the C-function. In some node with two in-edges, 
the expression ¢(a l ,  a2) has the value al if we reached 
this node on the first in-edge, and a2 if we came in on the 
second in-edge. 

Let's use the following program to illustrate: 

i 4 - 1  
j 4 - 1  
k 4 - 0  
while k < 100 

i f j  < 20 
j + - - i  
k 4 - k + l  

else 
j 4 - k  
k + - k + 2  

return j 

First we tum this into a control-flow graph (CFG): 

/ / ~ [ i f k  < 100 l 
~ - . ~  

/ [ i f j<20" ]  3 [return j j4 

I -":re  6 
[ [ j < - - i  I [ j<- -k  
/Ik~---k+l ] [ k e - k + 2  

17 

21

Maybe both?



So who is right? Functional  PL or Imperative “Compiler” people?

Functionoi 

Editor: Philip Wadler, Bell Laboratories, Lucent Technologies; wadler@ research.beU-labs.com 

SSA is Functional Programming 
Andrew W. Appel 

Static Single-Assignment (SSA) form is an intermedi- 
ate language designed to make optimization clean and 
efficient for imperative-language (Fortran, C) compil- 
ers. Lambda-calculus is an intermediate language that 
makes optimization clean and efficient for functional- 
language (Scheme, ML, Haskell) compilers. The SSA 
community draws pictures of graphs with basic blocks 
and flow edges, and the functional-language community 
writes lexically nested functions, but (as Richard Kelsey 
recently pointed out [9]) they're both doing exactly the 
same thing in different notation. 

SSA form. Many dataflow analyses need to find the 
use-sites of each defined variable or the definition-sites 
of each variable used in an expression. The def-use chain 
is a data structure that makes this efficient: for each state- 
ment in the flow graph, the compiler can keep a list of 
pointers to all the use sites of variables defined there, and 
a list of pointers to all definition sites of the variables used 
there. But when a variable has N definitions and M uses, 
we might need N • M pointers to connect them. 

The designers of SSA form were trying to make an im- 
proved form of def-use chains that didn't suffer from this 
problem. Also, they were concerned with "getting the 
right number of names:" the programmer might use some 
variable i for several unrelated purposes in the same pro- 
cedure-  for example, as the loop counter for two different 
loops - and we can do more optimization if we split i into 
different variables il and i2. 

In SSA, each variable in the program has only one defi- 
nition - it is assigned to only once. The assignment might 
be in a loop, which is executed many times; so single- 
assignment is a static property of the program text, not a 
dynamic property of program execution. 

a 4- x + y  al 4- x T y  
b 4- a - 1  bl 4- a ~ - i  
a ~ y + b a2 4- y + b~ 
b 4- x . 4  b2 4- x . 4  
a 4- a + b  a3 4- a 2 + b 2  

To achieve single-assignment, we make up a new vari- 

able name for each assignment to the variable. For ex- 
ample, we convert the program at left into the single- 
assignment program at right. At left, a use of a at any 
point refers to the most recent definition, so we know 
where to use al,  a2, or a3, in the program at right. 

For a program with no jumps this is easy. But where 
two control-flow edges join together, carrying different 
values of some variable i, we must somehow merge the 
two values. In SSA form this is done by a notational 
trick, the C-function. In some node with two in-edges, 
the expression ¢(a l ,  a2) has the value al if we reached 
this node on the first in-edge, and a2 if we came in on the 
second in-edge. 

Let's use the following program to illustrate: 

i 4 - 1  
j 4 - 1  
k 4 - 0  
while k < 100 

i f j  < 20 
j + - - i  
k 4 - k + l  

else 
j 4 - k  
k + - k + 2  

return j 

First we tum this into a control-flow graph (CFG): 

/ / ~ [ i f k  < 100 l 
~ - . ~  

/ [ i f j<20" ]  3 [return j j4 

I -":re  6 
[ [ j < - - i  I [ j<- -k  
/Ik~---k+l ] [ k e - k + 2  

17 

22



Outline of Lectures over the week

• Tuesday: Functional Intermediate Representations

• Lambda Calculus and the Lambda Cube

• Implementation Strategies for System F (ADTs across different PLs)

• Implementation Strategies for Binders

• Compiler transformations as rewrite rules


• Wednesday: Imperative Intermediate Representations

• Foundations of Single Static Assignment (SSA)

• LLVM IR

• Control-Flow Graphs

• Data-flow analysis


• Thursday: Domain-Specific Intermediate Representations

• MLIR — a compiler infrastructure for building domain-specific intermediate representations

• Dataflow graphs — TensorFlow

• Pattern-based (and functional) — RISE
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