
Compiler Intermediate Representations
SPLV 2020 — Michel Steuwer

Michel Steuwer

• Since July 2020: Lecturer in Compilers and Runtime Systems at the University of Edinburgh

• 2017 - 2020: Lecturer at the University of Glasgow

• 2014 - 2017: Post-doc at the University of Edinburgh

• 2010 - 2015: PhD studies at the University of Münster in Germany

Main Research Focus: 
Parallel Programming, Domain Specific Compilers, Heterogeneous Systems

2

RISE

RISE

ELEVATE

OpenMP OpenCL …

RISE

ELEVATE

Domain-Specific
Extension

Hardware-Specific
Extension

High-Level
Program

Low-Level
Program

Low-Level Code

Optimization
Strategy

Computational
Patterns

map reduce
split join …

 Strategy
Combinators
seq try
dfsTraversal …

Computational
Patterns

stencil
conv3x3 …

Optimisation
Strategies

tiling
separability
winograd …

Computational
Patterns

mapSeq mapPar
mapVect asVect
matrixMult4x4 …

 Optimisation
Strategies

vectorize
doRegRotation
pipeline …

3

Rewriting

Code Generation

Current Research: RISE + ELEVATE

A compiler framework for optimising domain-specific applications for specialised hardware

https://rise-lang.org/

https://github.com/rise-lang

https://elevate-lang.org/

https://github.com/elevate-lang

https://rise-lang.org/
https://github.com/rise-lang
https://elevate-lang.org/
https://github.com/elevate-lang

60 COMMUNICATIONS OF THE ACM | FEBRUARY 2009 | VOL. 52 | NO. 2

contributed articles

WE PRESENT A perspective on the past contributions,
current status, and future directions of compiler
technology and make four main recommendations
in support of a vibrant compiler field in the years to
come. These recommendations were drawn from
discussions among presenters and attendees at a U.S.
National Science Foundation-sponsored Workshop
on Future Directions for Compiler Research and
Education in 2007. As 2007 was the 50th anniversary
of IBM’s release of the first optimizing compiler, it
was a particularly appropriate year to take stock of the
status of compiler technology and discuss its future
over the next 50 years. Today, compilers and high-
level languages are the foundation of the complex and
ubiquitous software infrastructure that undergirds the
global economy. The powerful and elegant technology
in compilers has also been invaluable in other
domains (such as hardware synthesis). It is no

exaggeration to say that compilers and
high-level languages are as central to
the information age as semiconductor
technology.

In the coming decade, 2010 to 2020,
compiler research will play a critical role
in addressing two of the major challeng-
es facing the overall computer field:

Cost of programming multicore pro-
cessors. While machine power will con-
tinue to grow impressively, increased
parallelism, rather than clock rate, will
be the driving force in computing in
the foreseeable future. This ongoing
shift toward parallel architectural para-
digms is one of the greatest challenges
for the microprocessor and software
industries. In 2005, Justin Rattner,
chief technology officer of Intel Cor-
poration, said, “We are at the cusp of a
transition to multicore, multithreaded
architectures, and we still have not
demonstrated the ease of program-
ming the move will require…”3

Security and reliability of complex
software systems. Software systems
are increasingly complex, making the
need to address defects and security
attacks more urgent. The profound
economic impact of program defects
was discussed in a 2002 study commis-
sioned by the U.S. Department of Com-
merce National Institute of Standards
and Technology (NIST), concluding
that program defects “are so preva-
lent and so detrimental that they cost
the U.S. economy an estimated $59.5
billion annually, or about 0.6% of the
gross domestic product.” The 2005
U.S. President’s Information Technol-
ogy Advisory Committee (PITAC) report
Cyber Security: A Crisis of Prioritization
included secure software engineer-
ing and software assurance among its
top 10 research priorities, concluding
with: “Commonly used software engi-
neering practices permit dangerous
errors, such as improper handling of
buffer overflows, which enable hun-
dreds of attack programs to compro-
mise millions of computers every year.
In the future, the Nation [the U.S.] may
face even more challenging problems
as adversaries—both foreign and do-

DOI:10.1145/1461928.1461946

Research and education in compiler
technology is more important than ever.

BY MARY HALL, DAVID PADUA, AND KESHAV PINGALI

Compiler
Research:
The Next
50 Years

Communications of
the ACM 
February 2009

4

60 COMMUNICATIONS OF THE ACM | FEBRUARY 2009 | VOL. 52 | NO. 2

contributed articles

WE PRESENT A perspective on the past contributions,
current status, and future directions of compiler
technology and make four main recommendations
in support of a vibrant compiler field in the years to
come. These recommendations were drawn from
discussions among presenters and attendees at a U.S.
National Science Foundation-sponsored Workshop
on Future Directions for Compiler Research and
Education in 2007. As 2007 was the 50th anniversary
of IBM’s release of the first optimizing compiler, it
was a particularly appropriate year to take stock of the
status of compiler technology and discuss its future
over the next 50 years. Today, compilers and high-
level languages are the foundation of the complex and
ubiquitous software infrastructure that undergirds the
global economy. The powerful and elegant technology
in compilers has also been invaluable in other
domains (such as hardware synthesis). It is no

exaggeration to say that compilers and
high-level languages are as central to
the information age as semiconductor
technology.

In the coming decade, 2010 to 2020,
compiler research will play a critical role
in addressing two of the major challeng-
es facing the overall computer field:

Cost of programming multicore pro-
cessors. While machine power will con-
tinue to grow impressively, increased
parallelism, rather than clock rate, will
be the driving force in computing in
the foreseeable future. This ongoing
shift toward parallel architectural para-
digms is one of the greatest challenges
for the microprocessor and software
industries. In 2005, Justin Rattner,
chief technology officer of Intel Cor-
poration, said, “We are at the cusp of a
transition to multicore, multithreaded
architectures, and we still have not
demonstrated the ease of program-
ming the move will require…”3

Security and reliability of complex
software systems. Software systems
are increasingly complex, making the
need to address defects and security
attacks more urgent. The profound
economic impact of program defects
was discussed in a 2002 study commis-
sioned by the U.S. Department of Com-
merce National Institute of Standards
and Technology (NIST), concluding
that program defects “are so preva-
lent and so detrimental that they cost
the U.S. economy an estimated $59.5
billion annually, or about 0.6% of the
gross domestic product.” The 2005
U.S. President’s Information Technol-
ogy Advisory Committee (PITAC) report
Cyber Security: A Crisis of Prioritization
included secure software engineer-
ing and software assurance among its
top 10 research priorities, concluding
with: “Commonly used software engi-
neering practices permit dangerous
errors, such as improper handling of
buffer overflows, which enable hun-
dreds of attack programs to compro-
mise millions of computers every year.
In the future, the Nation [the U.S.] may
face even more challenging problems
as adversaries—both foreign and do-

DOI:10.1145/1461928.1461946

Research and education in compiler
technology is more important than ever.

BY MARY HALL, DAVID PADUA, AND KESHAV PINGALI

Compiler
Research:
The Next
50 Years

Communications of
the ACM 
February 2009

5

60 COMMUNICATIONS OF THE ACM | FEBRUARY 2009 | VOL. 52 | NO. 2

contributed articles

WE PRESENT A perspective on the past contributions,
current status, and future directions of compiler
technology and make four main recommendations
in support of a vibrant compiler field in the years to
come. These recommendations were drawn from
discussions among presenters and attendees at a U.S.
National Science Foundation-sponsored Workshop
on Future Directions for Compiler Research and
Education in 2007. As 2007 was the 50th anniversary
of IBM’s release of the first optimizing compiler, it
was a particularly appropriate year to take stock of the
status of compiler technology and discuss its future
over the next 50 years. Today, compilers and high-
level languages are the foundation of the complex and
ubiquitous software infrastructure that undergirds the
global economy. The powerful and elegant technology
in compilers has also been invaluable in other
domains (such as hardware synthesis). It is no

exaggeration to say that compilers and
high-level languages are as central to
the information age as semiconductor
technology.

In the coming decade, 2010 to 2020,
compiler research will play a critical role
in addressing two of the major challeng-
es facing the overall computer field:

Cost of programming multicore pro-
cessors. While machine power will con-
tinue to grow impressively, increased
parallelism, rather than clock rate, will
be the driving force in computing in
the foreseeable future. This ongoing
shift toward parallel architectural para-
digms is one of the greatest challenges
for the microprocessor and software
industries. In 2005, Justin Rattner,
chief technology officer of Intel Cor-
poration, said, “We are at the cusp of a
transition to multicore, multithreaded
architectures, and we still have not
demonstrated the ease of program-
ming the move will require…”3

Security and reliability of complex
software systems. Software systems
are increasingly complex, making the
need to address defects and security
attacks more urgent. The profound
economic impact of program defects
was discussed in a 2002 study commis-
sioned by the U.S. Department of Com-
merce National Institute of Standards
and Technology (NIST), concluding
that program defects “are so preva-
lent and so detrimental that they cost
the U.S. economy an estimated $59.5
billion annually, or about 0.6% of the
gross domestic product.” The 2005
U.S. President’s Information Technol-
ogy Advisory Committee (PITAC) report
Cyber Security: A Crisis of Prioritization
included secure software engineer-
ing and software assurance among its
top 10 research priorities, concluding
with: “Commonly used software engi-
neering practices permit dangerous
errors, such as improper handling of
buffer overflows, which enable hun-
dreds of attack programs to compro-
mise millions of computers every year.
In the future, the Nation [the U.S.] may
face even more challenging problems
as adversaries—both foreign and do-

DOI:10.1145/1461928.1461946

Research and education in compiler
technology is more important than ever.

BY MARY HALL, DAVID PADUA, AND KESHAV PINGALI

Compiler
Research:
The Next
50 Years

Communications of
the ACM 
February 2009

When the field of compiling began in the late 1950s,
its focus was limited to the translation of high-level
language programs into machine code and to the
optimisation of space and time requirements of
programs. […] 
 
The compiler field is increasingly intertwined with
other disciplines, including computer architecture,
programming languages, formal methods, software
engineering, and computer security.

6

Compilers of the past: Fortran
Th first commercial and complete compiler

IBM 704 mainframe

Backus et al.; The FORTRAN Automatic Coding System 189

THE FORTRAN LANGUAGE
The FORTRAN language is most easily described

by reviewing some examples.

Arithmetic Statements
Example 1 : Compute :

- (B/2) 4- d(B/2) - AC .
root =

FORTRAN Program :

ROOT
= (- (B/2.0) + SQRTF((B/2.0) * * 2 - A * C))/A.

Notice that the desired erogram is a single FOR-
TRAN statement, an arithmetic formula. I ts meaning
is: "Evaluate the expression on the right of the = sign
and make this the value of the variable on the left.?'
The symbol * denotes multiplication and * * denotes
exponentiation (i.e., A * * B means AB). The program
which is generated from this statement effects the
computation in floating point arithmetic, avoids com-
puting (B/2.0) twice and computes (B/2.0) * * 2 by a
multiplication rather than by an exponentiation routine.
[Had (B/2.O) * * 2.01 appeared instead, an exponentia-
tion routine would necessarily be used, requiring more
time than the multiplication.]

The programmer can refer to quantities in both
floating point and integer form. Integer quantities

\ a re somewhat restricted in their use and serve primarily
a s subscripts or exponents. Integer constants are written
without a decimal point. Example: 2 (integer form) vs
2.0 (floating point form). Integer variables begin with
I , J, K, L, M, or N. Any meaningful arithmetic expres-
sion may appear on the right-hand side of an arithmetic
statement, provided the following restriction is ob-
served: an integer quantity can appear in a floating-
point expression only as a subscript or as an exponent
or as the argument of certain functions. The functions
which the programmer may refer to are limited only
by those available on the library tape a t the time, such
a s SQRTF, plus those simple functions which he has
defined for the given problem by means of function
statements. An example will serve to describe the latter.

Function Statements
Example 2: Define a function of three variables to be

used throughout a given problem, as follows: f

Function statements must precede the rest of the pro-
gram. They are composed of tho desired function name
(ending in F) followed by any desired arguments which
appear in the arithmetic expression on the right of the
= sign. The definition of a function may employ any

previously defined functions. Having defined ROOTF
as above, the programmer may apply i t to any set of
arguments in any subsequent arithmetic statements. For
example, a later arithmetic statement might be

THETA = 1.0 + GAMMA * ROOTF(P1, 3.2 * Y + 14.0, 7.63).

DO Statements, DIMENSION Statements, and Sub-
scripted Variables

Examgle 3: Set Qm,, equal to the largest quantity
P(ai+bi)/P(ai- bi) for some i between 1 and 1000
.where P(x) = C ~ + ~ ~ X + C ~ X ~ + C ~ X ~ .

FORTRAN Program:
1) POLYF(X) =CO+X * (C l + X * (C2+X * C3)).
2) DIMENSION A(1000), B(1000).
3) QMAX = - 1.0 E20.
4) DO 5 I =1, 1000.
5) QMAX = MAXF(QMAX, POLYF(A(1)

+B(I))/POLYF(A(I) -B(I))).
6) STOP.

The program above is complete except for input and
output statements which will be described later. The
first statement is not executed; it defines the desired
polynomial (in factored form for efficient output pro-
gram). Similarly, the second statement merely informs
the executive routine that the vectors A and B each have
1000 elements. Statement 3 assigns a large negative
initial value to QMAX, - 1.0 X 1020, using a special
concise form for writing floating-point constants. State-
ment 4 says "DO the following sequence of statements
down to and including the statement numbered 5 for
successive values of I from 1 to 1000." In this case
there is only one statement 5 to be repeated. I t is exe-
cuted 1000 times; the first time reference is made to
A(l) and B(1), the second time to A(2) and B(2), etc.
After the 1000th execution of statement 5, statement
6-STOP-is finally encountered. In statement 5,
the function MAXF appears. MAXF may have two
or more arguments and its value, by definition, is the
value of its largest argument. Thus on each repetition
of statement 5 the old value of QMAX is replaced by
itself or by the value of POLY F(A(1) +B (I)) /POLYF
(A(1) - B (I)), whichever is larger. The value of QMAX
after the 1000th repetition is therefore the desired
maximum.

Example 4: Multiply the n Xlr matrix 520) by
its transpose, obtaining the product elements on or be-
low the main diagonal by the relation

cis j = 5 a i . k e a j , k (for j < i)
k-1

and the remaining elements by the relation

Backus et al. : The F O R T R A N auto ma ti ti^. Coding System 191

Ach execution of PRINT causes a single line to be
printed with ARG, SUM, VALUE printed in the first
three of the five fields described by FORMAT state-
ment 1.

The IF' statement says " I f A RG - A L P H A (I) is
negative go tostatement 4, if it 3s zero go to statement
3, and if it is' 'positive go to 3." Thus the repetition
of the two Statements controlled by the DO consists
normally of computing ARG - ALPHA(1) , finding i t
zero or positive, and going to statement 3 followed by
the next repetition. H~wever , when I has been in-
creased to the extent that the first ALPHA exceeding
ARG is encountered, control will pass to statement 4:
Note that this statement does not belong to the se-
quence controlled by the DO. In such cases, the repeti-
tion specified by the DO is terminated and the value of
the index (in this ease I) is preserved. Thus if the first
ALPHA exceeding ARG were ALPHA (20), then RHO
(19) would be obtaihed in statement 4.

The GO T O statement, of course, passes control to
statement 2, which initiates reading the 11 cards for the
next case. The process will continue until there are no
more cards in the reader. The above program is entirely
complete. When punched in cards as shown, and comd
piled, the jcrandlator will produce a ready-to-run 704
program which will perform the job specified.

Other Types of F O R T R A N Statements
In the above examples the following types of FOR-

TRAN statements have been exhibited.
Arithmetic statements
Function statements
DO statements
I F statements
GO TO statements
READ statements
PRINT statements
STOP' statements
DIM ~ N S I O N statements
FORMAT statements.

The explanations accompanying each example have
attempted to show some of the possible applications and
variations of these statements. I t is felt that these
examples give a representative picture of the FOR-
TRAN language; however, many of its features have
had to be omitted. There are 23 other types of state-
ments in the language, many of them completely
analogous to some of those described here. They pro-
vide facilities for referring to other input-output' and
auxiliary storage devices (tapes, drums, and card
punch), for specifying preset and computed branching
of control, for detecting various conditions which may
arise such as an at tempt to divide by zero, and for pro-
viding various information about a program to the
translator. A complete description of the language is to
be found in Programmer's Reference Manual, the FOR-
T R A N Automatic Coding System for the IB M 704.

Preparation of a Program for Translation
The translator accepts statements punched one per

card (continuation cards may be used for very long
statements). There is a separate key on the keypunch-
ing device for each character used in FORTRAN state-
ments and each character is represented in the card by
several holes in a single column of the card. Five
columns are reserved for a statement number (if pres-
ent) and 66 are available for the statement. Keyguhch-
ing a FORTRAN program is therefore a prockss similar

. , to that of typing the program.

Translation
The deck of cards obtained by keypunching may

then be put in the card reader of a 704 equipped'with
the translator program. When the load buttori is Sressed
one gets either 1) a list of input statements which fail
to conform to specifications of the FORTRAN language
accompanied by remarks which indicate the type of
error in each case; 2) a deck of binary cards representing
the desired 704 program, 3) a binary tape of the program
which can either be preserved or loaded and executed
immediately after translation is complete, or 4) a tape
containing the output program in symbolic form suitable
for alteration and later assembly. (Some of these out- ,

puts may be unavailable a t the time of publication.)

THE FORTRAN TRANSLATOR
General Organization of the System

The FORTRAN translator consists of six successive
sections, as follows.

Sectiorc 1: Reads in and classifies statements. For
arithmetic formulas, compiles the object (output) in-
structions. For nonarithmetic statements including
input-output, does a partial compilation, and records
the remaining information in tables. All instructions
compiled in this section are in the COMPAIL file.

Section 2: Compiles the instructions associated with
indexing, which result from DO statements and the oe-
currence of subscripted variables, These instructions
are placed in the COMPDO file,

Section 3: Merges the COMPAIL and COMPDO
files into a single file, meanwhile completing the compila-
tion of nonarithmetic statements begun in Section 1.
The object program is now complete, but assumes an
object machine with a large number of index registers.

Section 4: Carries out an analysis of the flow of the
object program, to be used by Section 5.

Section 9: Converts the object program to one which
involves only the three index registers of the 704.

Section 6: Assembles the object program, producing
a relocatable binary program ready for running. Alsc
on demand produces the object program in SHARE
symbolic language.

(Note: Section 3 is of internal importance only; Sec- .
tion 6 is a fairly conventional assembly program. These
sections will be treated only briefly in what follows.)

1957

7

Compilers of the past: Fortran
The first commercial and complete compiler

IBM 704 mainframe

Backus et al.; The FORTRAN Automatic Coding System 189

THE FORTRAN LANGUAGE
The FORTRAN language is most easily described

by reviewing some examples.

Arithmetic Statements
Example 1 : Compute :

- (B/2) 4- d(B/2) - AC .
root =

FORTRAN Program :

ROOT
= (- (B/2.0) + SQRTF((B/2.0) * * 2 - A * C))/A.

Notice that the desired erogram is a single FOR-
TRAN statement, an arithmetic formula. I ts meaning
is: "Evaluate the expression on the right of the = sign
and make this the value of the variable on the left.?'
The symbol * denotes multiplication and * * denotes
exponentiation (i.e., A * * B means AB). The program
which is generated from this statement effects the
computation in floating point arithmetic, avoids com-
puting (B/2.0) twice and computes (B/2.0) * * 2 by a
multiplication rather than by an exponentiation routine.
[Had (B/2.O) * * 2.01 appeared instead, an exponentia-
tion routine would necessarily be used, requiring more
time than the multiplication.]

The programmer can refer to quantities in both
floating point and integer form. Integer quantities

\ a re somewhat restricted in their use and serve primarily
a s subscripts or exponents. Integer constants are written
without a decimal point. Example: 2 (integer form) vs
2.0 (floating point form). Integer variables begin with
I , J, K, L, M, or N. Any meaningful arithmetic expres-
sion may appear on the right-hand side of an arithmetic
statement, provided the following restriction is ob-
served: an integer quantity can appear in a floating-
point expression only as a subscript or as an exponent
or as the argument of certain functions. The functions
which the programmer may refer to are limited only
by those available on the library tape a t the time, such
a s SQRTF, plus those simple functions which he has
defined for the given problem by means of function
statements. An example will serve to describe the latter.

Function Statements
Example 2: Define a function of three variables to be

used throughout a given problem, as follows: f

Function statements must precede the rest of the pro-
gram. They are composed of tho desired function name
(ending in F) followed by any desired arguments which
appear in the arithmetic expression on the right of the
= sign. The definition of a function may employ any

previously defined functions. Having defined ROOTF
as above, the programmer may apply i t to any set of
arguments in any subsequent arithmetic statements. For
example, a later arithmetic statement might be

THETA = 1.0 + GAMMA * ROOTF(P1, 3.2 * Y + 14.0, 7.63).

DO Statements, DIMENSION Statements, and Sub-
scripted Variables

Examgle 3: Set Qm,, equal to the largest quantity
P(ai+bi)/P(ai- bi) for some i between 1 and 1000
.where P(x) = C ~ + ~ ~ X + C ~ X ~ + C ~ X ~ .

FORTRAN Program:
1) POLYF(X) =CO+X * (C l + X * (C2+X * C3)).
2) DIMENSION A(1000), B(1000).
3) QMAX = - 1.0 E20.
4) DO 5 I =1, 1000.
5) QMAX = MAXF(QMAX, POLYF(A(1)

+B(I))/POLYF(A(I) -B(I))).
6) STOP.

The program above is complete except for input and
output statements which will be described later. The
first statement is not executed; it defines the desired
polynomial (in factored form for efficient output pro-
gram). Similarly, the second statement merely informs
the executive routine that the vectors A and B each have
1000 elements. Statement 3 assigns a large negative
initial value to QMAX, - 1.0 X 1020, using a special
concise form for writing floating-point constants. State-
ment 4 says "DO the following sequence of statements
down to and including the statement numbered 5 for
successive values of I from 1 to 1000." In this case
there is only one statement 5 to be repeated. I t is exe-
cuted 1000 times; the first time reference is made to
A(l) and B(1), the second time to A(2) and B(2), etc.
After the 1000th execution of statement 5, statement
6-STOP-is finally encountered. In statement 5,
the function MAXF appears. MAXF may have two
or more arguments and its value, by definition, is the
value of its largest argument. Thus on each repetition
of statement 5 the old value of QMAX is replaced by
itself or by the value of POLY F(A(1) +B (I)) /POLYF
(A(1) - B (I)), whichever is larger. The value of QMAX
after the 1000th repetition is therefore the desired
maximum.

Example 4: Multiply the n Xlr matrix 520) by
its transpose, obtaining the product elements on or be-
low the main diagonal by the relation

cis j = 5 a i . k e a j , k (for j < i)
k-1

and the remaining elements by the relation

Backus et al. : The F O R T R A N auto ma ti ti^. Coding System 191

Ach execution of PRINT causes a single line to be
printed with ARG, SUM, VALUE printed in the first
three of the five fields described by FORMAT state-
ment 1.

The IF' statement says " I f A RG - A L P H A (I) is
negative go tostatement 4, if it 3s zero go to statement
3, and if it is' 'positive go to 3." Thus the repetition
of the two Statements controlled by the DO consists
normally of computing ARG - ALPHA(1) , finding i t
zero or positive, and going to statement 3 followed by
the next repetition. H~wever , when I has been in-
creased to the extent that the first ALPHA exceeding
ARG is encountered, control will pass to statement 4:
Note that this statement does not belong to the se-
quence controlled by the DO. In such cases, the repeti-
tion specified by the DO is terminated and the value of
the index (in this ease I) is preserved. Thus if the first
ALPHA exceeding ARG were ALPHA (20), then RHO
(19) would be obtaihed in statement 4.

The GO T O statement, of course, passes control to
statement 2, which initiates reading the 11 cards for the
next case. The process will continue until there are no
more cards in the reader. The above program is entirely
complete. When punched in cards as shown, and comd
piled, the jcrandlator will produce a ready-to-run 704
program which will perform the job specified.

Other Types of F O R T R A N Statements
In the above examples the following types of FOR-

TRAN statements have been exhibited.
Arithmetic statements
Function statements
DO statements
I F statements
GO TO statements
READ statements
PRINT statements
STOP' statements
DIM ~ N S I O N statements
FORMAT statements.

The explanations accompanying each example have
attempted to show some of the possible applications and
variations of these statements. I t is felt that these
examples give a representative picture of the FOR-
TRAN language; however, many of its features have
had to be omitted. There are 23 other types of state-
ments in the language, many of them completely
analogous to some of those described here. They pro-
vide facilities for referring to other input-output' and
auxiliary storage devices (tapes, drums, and card
punch), for specifying preset and computed branching
of control, for detecting various conditions which may
arise such as an at tempt to divide by zero, and for pro-
viding various information about a program to the
translator. A complete description of the language is to
be found in Programmer's Reference Manual, the FOR-
T R A N Automatic Coding System for the IB M 704.

Preparation of a Program for Translation
The translator accepts statements punched one per

card (continuation cards may be used for very long
statements). There is a separate key on the keypunch-
ing device for each character used in FORTRAN state-
ments and each character is represented in the card by
several holes in a single column of the card. Five
columns are reserved for a statement number (if pres-
ent) and 66 are available for the statement. Keyguhch-
ing a FORTRAN program is therefore a prockss similar

. , to that of typing the program.

Translation
The deck of cards obtained by keypunching may

then be put in the card reader of a 704 equipped'with
the translator program. When the load buttori is Sressed
one gets either 1) a list of input statements which fail
to conform to specifications of the FORTRAN language
accompanied by remarks which indicate the type of
error in each case; 2) a deck of binary cards representing
the desired 704 program, 3) a binary tape of the program
which can either be preserved or loaded and executed
immediately after translation is complete, or 4) a tape
containing the output program in symbolic form suitable
for alteration and later assembly. (Some of these out- ,

puts may be unavailable a t the time of publication.)

THE FORTRAN TRANSLATOR
General Organization of the System

The FORTRAN translator consists of six successive
sections, as follows.

Sectiorc 1: Reads in and classifies statements. For
arithmetic formulas, compiles the object (output) in-
structions. For nonarithmetic statements including
input-output, does a partial compilation, and records
the remaining information in tables. All instructions
compiled in this section are in the COMPAIL file.

Section 2: Compiles the instructions associated with
indexing, which result from DO statements and the oe-
currence of subscripted variables, These instructions
are placed in the COMPDO file,

Section 3: Merges the COMPAIL and COMPDO
files into a single file, meanwhile completing the compila-
tion of nonarithmetic statements begun in Section 1.
The object program is now complete, but assumes an
object machine with a large number of index registers.

Section 4: Carries out an analysis of the flow of the
object program, to be used by Section 5.

Section 9: Converts the object program to one which
involves only the three index registers of the 704.

Section 6: Assembles the object program, producing
a relocatable binary program ready for running. Alsc
on demand produces the object program in SHARE
symbolic language.

(Note: Section 3 is of internal importance only; Sec- .
tion 6 is a fairly conventional assembly program. These
sections will be treated only briefly in what follows.)

1957

8

Compilers of the present: LLVM
De-factor standard for industrial compiler infrastructure

C / C++

Fortran

Haskell

Julia

Rust

Swift

CUDA

OpenCL

…

Front end Middle end Back end
Clang

Flang

GHC

julia

rustc

swift

nvcc

libOpenCL

LLVM

ARM

x86

x86-64

RISC-V

PowerPC

Nvidia PTX

AMD GCN

…

LLVM

LLVM IR LLVM IR

9

Compilers of the present: LLVM
De-factor standard for industrial compiler infrastructure

C / C++

Fortran

Haskell

Julia

Rust

Swift

CUDA

OpenCL

…

Front end Middle end Back end
Clang

Flang

GHC

julia

rustc

swift

nvcc

libOpenCL

LLVM

ARM

x86

x86-64

RISC-V

PowerPC

Nvidia PTX

AMD GCN

…

LLVM

LLVM IR LLVM IR

Many languages are compiled to many hardware targets 
via a single low-level intermediate representation

10

11

LLVM’s Intermediate Representation

" LLVM is a Static Single
Assignment (SSA) based
representation that provides
type safety, low-level
operations, flexibility, and
the capability of
representing ‘all’ high-level
languages cleanly.

LLVM Language Reference 
https://llvm.org/docs/LangRef.html

https://llvm.org/docs/LangRef.html

12

LLVM’s Intermediate Representation

" LLVM is a Static Single
Assignment (SSA) based
representation that provides
type safety, low-level
operations, flexibility, and
the capability of
representing ‘all’ high-level
languages cleanly.

LLVM Language Reference 
https://llvm.org/docs/LangRef.html

Programs are represented in a graph structure
to facilitate data-flow analysis allowing

optimisations by re-arranging instructions.

https://llvm.org/docs/LangRef.html

Compilers of the future: ???
One important trend: higher-level intermediate representations

13

Swift Intermediate Language
A high level IR to complement LLVM

Joe Groff and Chris Lattner

https://llvm.org/devmtg/2015-10/slides/GroffLattner-SILHighLevelIR.pdf
https://blog.rust-lang.org/2016/04/19/MIR.html

So what makes a “good” Intermediate Representation?DEVELOPMENT

1

Intermediate Representation

The increasing signi!cance of intermediate representations in compilers

Fred Chow

Program compilation is a complicated process. A compiler is a software program that translates
a high-level source language program into a form ready to execute on a computer. Early in the
evolution of compilers, designers introduced IRs (intermediate representations, also commonly called
intermediate languages) to manage the complexity of the compilation process. The use of an IR as
the compiler’s internal representation of the program enables the compiler to be broken up into
multiple phases and components, thus benefiting from modularity.

An IR is any data structure that can represent the program without loss of information so that
its execution can be conducted accurately. It serves as the common interface among the compiler
components. Since its use is internal to a compiler, each compiler is free to define the form and
details of its IR, and its specification needs to be known only to the compiler writers. Its existence
can be transient during the compilation process, or it can be output and handled as text or binary
files.

THE IMPORTANCE OF IRS TO COMPILERS
An IR should be general so that it is capable of representing programs translated from multiple
languages. Compiler writers traditionally refer to the semantic content of programming languages

source
program

r�NBOZ�MBOHVBHF�DPOTUSVDUT
r�TIPSUFTU�DPEF�TFRVFODF
r�DPNQMFUF�QSPHSBN�JOGPSNBUJPO
r�IJFSBSDIJDBM�DPOTUSVDUT
r�VODMFBS�FYFDVUJPO�QFSGPSNBODF

r�GFXFS�LJOET�PG�DPOTUSVDUT
r�MPOHFS�DPEF�TFRVFODF
r�TNBMMFS�BNPVOU�PG�QSPHSBN�JOGPSNBUJPO
r�NJYUVSF�PG�IFJSBSDIJDBM�BOE�äBU�DPOTUSVDUT
r�FYFDVUJPO�QFSGPSNBODF�QSFEJDUBCMF

r�NBOZ�LJOET�PG�NBDIJOF�JOTUSVDUJPOT
r�MPOHFTU�DPEF�TFRVFODF
r�MFBTU�BNPVOU�PG�QSPHSBN�JOGPSNBUJPO
r�äBU�DPOTUSVDUT
r�FYFDVUJPO�QFSGPSNBODF�BQQBSFOU

IR

IJHI

levels

MPX NBDIJOF
JOTUSVDUJPOT

The Different Levels of Program Representations
14

So what makes a “good” Intermediate Representation?

15

DEVELOPMENT

7

first goal may not fulfill the needs of the second. It is also hard to say at this point whether one well-
defined IR standard can fulfill both purposes at the same time.

The HSA (Heterogeneous System Architecture) Foundation was formed in 2012 with the charter
of making programming heterogeneous devices dramatically easier by putting forth royalty-free
specifications and open source software.5 Its members intend to build a heterogeneous software
ecosystem rooted in open royalty-free industry standards.

Recently, the foundation put forth a specification for HSAIL (HSA Intermediate Language), which
is positioned as the ISA of an HSAIL virtual machine for any computing device that plans to adhere
to the standard. HSAIL is quite low level, somewhat analogous to the assembly language of a RISC
machine. It assumes a specific program and memory model catering to heterogeneous platforms
where multiple ISAs exist, with one specified as the host. It also specifies a model of parallel
processing as part of the virtual machine.

Although HSAIL is aligned with the vision of enabling a software ecosystem based on a virtual
machine, its requirements are too strong and lack generality, and thus will limit its applicability
to the specific segment of the computing industry that it targets. Though HSAIL is meant as the
compilation target for compiler developers, it is unlikely that any compiler will adopt HSAIL as an IR
during compilation because of the lack of simplicity in the HSAIL virtual machine. It is a step in the
right direction, however.

IR DESIGN ATTRIBUTES
In conclusion, here is a summary of the important design attributes of IRs and how they pertain to
the two visions discussed here. The first five attributes are shared by both visions.
UÊCompleteness. The IR must provide clean representation of all programming language constructs,
concepts, and abstractions for accurate execution on computing devices. A good test of this
attribute is whether it is easily translatable both to and from popular IRs in use today for various
programming languages.
UÊSemantic gap. The semantic gap between the source languages and the IR must be large enough
that it is not possible to recover the original source program, in order to protect intellectual property
rights. This implies the level of the IR must be low.
UÊHardware neutrality. The IR must not have built-in assumptions of any special hardware
characteristic. Any execution model apparent in the IR should be a reflection of the programming
language and not the hardware platform. This will ensure it can be compiled to the widest range of
machines, and implies that the level of the IR cannot be too low.
UÊManually programmable. Programming in IRs is similar to assembly programming. This gives
programmers the choice to hand-optimize their code. It is also a convenient feature that helps
compiler writers during compiler development. A higher-level IR is usually easier to program.
UÊExtensibility. As programming languages continue to evolve, there will be demands to support new
programming paradigms. The IR definition should provide room for extensions without breaking
compatibility with earlier versions.

From the compiler’s perspective, there are three more attributes that are important considerations
for the IR to be used as a program representation during compilation:
UÊSimplicity. The IR should have as few constructs as possible while remaining capable of
representing all computations translated from programming languages. Compilers often perform

So what makes a “good” Intermediate Representation?

16

DEVELOPMENT

7

first goal may not fulfill the needs of the second. It is also hard to say at this point whether one well-
defined IR standard can fulfill both purposes at the same time.

The HSA (Heterogeneous System Architecture) Foundation was formed in 2012 with the charter
of making programming heterogeneous devices dramatically easier by putting forth royalty-free
specifications and open source software.5 Its members intend to build a heterogeneous software
ecosystem rooted in open royalty-free industry standards.

Recently, the foundation put forth a specification for HSAIL (HSA Intermediate Language), which
is positioned as the ISA of an HSAIL virtual machine for any computing device that plans to adhere
to the standard. HSAIL is quite low level, somewhat analogous to the assembly language of a RISC
machine. It assumes a specific program and memory model catering to heterogeneous platforms
where multiple ISAs exist, with one specified as the host. It also specifies a model of parallel
processing as part of the virtual machine.

Although HSAIL is aligned with the vision of enabling a software ecosystem based on a virtual
machine, its requirements are too strong and lack generality, and thus will limit its applicability
to the specific segment of the computing industry that it targets. Though HSAIL is meant as the
compilation target for compiler developers, it is unlikely that any compiler will adopt HSAIL as an IR
during compilation because of the lack of simplicity in the HSAIL virtual machine. It is a step in the
right direction, however.

IR DESIGN ATTRIBUTES
In conclusion, here is a summary of the important design attributes of IRs and how they pertain to
the two visions discussed here. The first five attributes are shared by both visions.
UÊCompleteness. The IR must provide clean representation of all programming language constructs,
concepts, and abstractions for accurate execution on computing devices. A good test of this
attribute is whether it is easily translatable both to and from popular IRs in use today for various
programming languages.
UÊSemantic gap. The semantic gap between the source languages and the IR must be large enough
that it is not possible to recover the original source program, in order to protect intellectual property
rights. This implies the level of the IR must be low.
UÊHardware neutrality. The IR must not have built-in assumptions of any special hardware
characteristic. Any execution model apparent in the IR should be a reflection of the programming
language and not the hardware platform. This will ensure it can be compiled to the widest range of
machines, and implies that the level of the IR cannot be too low.
UÊManually programmable. Programming in IRs is similar to assembly programming. This gives
programmers the choice to hand-optimize their code. It is also a convenient feature that helps
compiler writers during compiler development. A higher-level IR is usually easier to program.
UÊExtensibility. As programming languages continue to evolve, there will be demands to support new
programming paradigms. The IR definition should provide room for extensions without breaking
compatibility with earlier versions.

From the compiler’s perspective, there are three more attributes that are important considerations
for the IR to be used as a program representation during compilation:
UÊSimplicity. The IR should have as few constructs as possible while remaining capable of
representing all computations translated from programming languages. Compilers often perform

??

??

But what about compiling functional languages?

• Functional languages use versions of λ-calculus as intermediate language 

• Haskell uses an intermediate language called Core 

• Its based on the λ-calculus variation System F 
 
System F == simply typed λ-calculus + polymorphism

17

http://blog.ezyang.com/2014/01/so-you-want-
to-add-a-new-concurrency-primitive-to-ghc/

Haskell Core

From http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)

map :: forall a b. (a -> b) -> [a] -> [b]
map =
 \ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
 case xs of _ {
 [] -> GHC.Types.[] @ b;
 : y ys -> GHC.Types.: @ b (f y) (map @ a @ b f ys)
 }

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

18

Haskell

Core

http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)

Haskell Core

From http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html#(16)

map :: forall a b. (a -> b) -> [a] -> [b]
map =
 \ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
 case xs of _ {
 [] -> GHC.Types.[] @ b;
 : y ys -> GHC.Types.: @ b (f y) (map @ a @ b f ys)
 }

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

19

Haskell

Core

Programs are represented in the λ-calculus to
facilitate optimizations by rewriting.

So who is right? Functional PL or Imperative “Compiler” people?

20

So who is right? Functional PL or Imperative “Compiler” people?

Functionoi
Editor: Philip Wadler, Bell Laboratories, Lucent Technologies; wadler@ research.beU-labs.com

SSA is Functional Programming
Andrew W. Appel

Static Single-Assignment (SSA) form is an intermedi-
ate language designed to make optimization clean and
efficient for imperative-language (Fortran, C) compil-
ers. Lambda-calculus is an intermediate language that
makes optimization clean and efficient for functional-
language (Scheme, ML, Haskell) compilers. The SSA
community draws pictures of graphs with basic blocks
and flow edges, and the functional-language community
writes lexically nested functions, but (as Richard Kelsey
recently pointed out [9]) they're both doing exactly the
same thing in different notation.

SSA form. Many dataflow analyses need to find the
use-sites of each defined variable or the definition-sites
of each variable used in an expression. The def-use chain
is a data structure that makes this efficient: for each state-
ment in the flow graph, the compiler can keep a list of
pointers to all the use sites of variables defined there, and
a list of pointers to all definition sites of the variables used
there. But when a variable has N definitions and M uses,
we might need N • M pointers to connect them.

The designers of SSA form were trying to make an im-
proved form of def-use chains that didn't suffer from this
problem. Also, they were concerned with "getting the
right number of names:" the programmer might use some
variable i for several unrelated purposes in the same pro-
cedure- for example, as the loop counter for two different
loops - and we can do more optimization if we split i into
different variables il and i2.

In SSA, each variable in the program has only one defi-
nition - it is assigned to only once. The assignment might
be in a loop, which is executed many times; so single-
assignment is a static property of the program text, not a
dynamic property of program execution.

a 4- x + y al 4- x T y
b 4- a - 1 bl 4- a ~ - i
a ~ y + b a2 4- y + b~
b 4- x . 4 b2 4- x . 4
a 4- a + b a3 4- a 2 + b 2

To achieve single-assignment, we make up a new vari-

able name for each assignment to the variable. For ex-
ample, we convert the program at left into the single-
assignment program at right. At left, a use of a at any
point refers to the most recent definition, so we know
where to use al, a2, or a3, in the program at right.

For a program with no jumps this is easy. But where
two control-flow edges join together, carrying different
values of some variable i, we must somehow merge the
two values. In SSA form this is done by a notational
trick, the C-function. In some node with two in-edges,
the expression ¢(a l , a2) has the value al if we reached
this node on the first in-edge, and a2 if we came in on the
second in-edge.

Let's use the following program to illustrate:

i 4 - 1
j 4 - 1
k 4 - 0
while k < 100

i f j < 20
j + - - i
k 4 - k + l

else
j 4 - k
k + - k + 2

return j

First we tum this into a control-flow graph (CFG):

/ / ~ [i f k < 100 l
~ - . ~

/ [i f j<20"] 3 [return j j4

I -":re 6
[[j < - - i I [j<- -k
/Ik~---k+l] [k e - k + 2

17

21

Maybe both?

So who is right? Functional PL or Imperative “Compiler” people?

Functionoi

Editor: Philip Wadler, Bell Laboratories, Lucent Technologies; wadler@ research.beU-labs.com

SSA is Functional Programming
Andrew W. Appel

Static Single-Assignment (SSA) form is an intermedi-
ate language designed to make optimization clean and
efficient for imperative-language (Fortran, C) compil-
ers. Lambda-calculus is an intermediate language that
makes optimization clean and efficient for functional-
language (Scheme, ML, Haskell) compilers. The SSA
community draws pictures of graphs with basic blocks
and flow edges, and the functional-language community
writes lexically nested functions, but (as Richard Kelsey
recently pointed out [9]) they're both doing exactly the
same thing in different notation.

SSA form. Many dataflow analyses need to find the
use-sites of each defined variable or the definition-sites
of each variable used in an expression. The def-use chain
is a data structure that makes this efficient: for each state-
ment in the flow graph, the compiler can keep a list of
pointers to all the use sites of variables defined there, and
a list of pointers to all definition sites of the variables used
there. But when a variable has N definitions and M uses,
we might need N • M pointers to connect them.

The designers of SSA form were trying to make an im-
proved form of def-use chains that didn't suffer from this
problem. Also, they were concerned with "getting the
right number of names:" the programmer might use some
variable i for several unrelated purposes in the same pro-
cedure- for example, as the loop counter for two different
loops - and we can do more optimization if we split i into
different variables il and i2.

In SSA, each variable in the program has only one defi-
nition - it is assigned to only once. The assignment might
be in a loop, which is executed many times; so single-
assignment is a static property of the program text, not a
dynamic property of program execution.

a 4- x + y al 4- x T y
b 4- a - 1 bl 4- a ~ - i
a ~ y + b a2 4- y + b~
b 4- x . 4 b2 4- x . 4
a 4- a + b a3 4- a 2 + b 2

To achieve single-assignment, we make up a new vari-

able name for each assignment to the variable. For ex-
ample, we convert the program at left into the single-
assignment program at right. At left, a use of a at any
point refers to the most recent definition, so we know
where to use al, a2, or a3, in the program at right.

For a program with no jumps this is easy. But where
two control-flow edges join together, carrying different
values of some variable i, we must somehow merge the
two values. In SSA form this is done by a notational
trick, the C-function. In some node with two in-edges,
the expression ¢(a l , a2) has the value al if we reached
this node on the first in-edge, and a2 if we came in on the
second in-edge.

Let's use the following program to illustrate:

i 4 - 1
j 4 - 1
k 4 - 0
while k < 100

i f j < 20
j + - - i
k 4 - k + l

else
j 4 - k
k + - k + 2

return j

First we tum this into a control-flow graph (CFG):

/ / ~ [i f k < 100 l
~ - . ~

/ [i f j<20"] 3 [return j j4

I -":re 6
[[j < - - i I [j<- -k
/Ik~---k+l] [k e - k + 2

17

22

Outline of Lectures over the week

• Tuesday: Functional Intermediate Representations

• Lambda Calculus and the Lambda Cube

• Implementation Strategies for System F (ADTs across different PLs)

• Implementation Strategies for Binders

• Compiler transformations as rewrite rules

• Wednesday: Imperative Intermediate Representations

• Foundations of Single Static Assignment (SSA)

• LLVM IR

• Control-Flow Graphs

• Data-flow analysis

• Thursday: Domain-Specific Intermediate Representations

• MLIR — a compiler infrastructure for building domain-specific intermediate representations

• Dataflow graphs — TensorFlow

• Pattern-based (and functional) — RISE

23

References

• Compiler Research: The Next 50 Years, Mary Hall, David Padua, Keshav Pingali https://dl.acm.org/doi/
10.1145/1461928.1461946

• The Fortran Automatic Coding System, Backus, Beeber, Best, Goldberg, Haibt, Herrick, Nelson, Sayre, Sheridan, Stern,
Ziller, Hughes, Nutt http://www.softwarepreservation.org/projects/FORTRAN/paper/BackusEtAl-
FortranAutomaticCodingSystem-1957.pdf

• Intermediate Representation, Fred Chow https://dl.acm.org/doi/abs/10.1145/2542661.2544374

• SSA is Functional Programming, Andrew Appel https://dl.acm.org/doi/10.1145/278283.278285

• A Correspondence between Continuation Passing Style and Static Single Assignment Form, Richard Kelsey, https://
dl.acm.org/doi/pdf/10.1145/202530.202532

https://dl.acm.org/doi/10.1145/1461928.1461946
https://dl.acm.org/doi/10.1145/1461928.1461946
https://dl.acm.org/doi/10.1145/1461928.1461946
https://dl.acm.org/doi/10.1145/1461928.1461946
http://www.softwarepreservation.org/projects/FORTRAN/paper/BackusEtAl-FortranAutomaticCodingSystem-1957.pdf
http://www.softwarepreservation.org/projects/FORTRAN/paper/BackusEtAl-FortranAutomaticCodingSystem-1957.pdf
http://www.softwarepreservation.org/projects/FORTRAN/paper/BackusEtAl-FortranAutomaticCodingSystem-1957.pdf
https://dl.acm.org/doi/abs/10.1145/2542661.2544374
https://dl.acm.org/doi/10.1145/278283.278285
https://dl.acm.org/doi/pdf/10.1145/202530.202532
https://dl.acm.org/doi/pdf/10.1145/202530.202532
https://dl.acm.org/doi/pdf/10.1145/202530.202532
https://dl.acm.org/doi/pdf/10.1145/202530.202532

