
GPGPU 2022 - 3 April 2022

 Systematically Extending a High-Level Code  
 Generator with Support for Tensor Cores  

Lukas Siefke, Bastian Köpcke, Sergei Gorlatch (University of Münster), 
and Michel Steuwer (University of Edinburgh)

1

A “new golden age of computer architecture”

“The next decade will see a Cambrian explosion of
novel computer architectures, meaning exiting
times for computer in academia and in industry.”

48 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

engineers, including ACM A.M. Tur-
ing Award laureate Fred Brooks, Jr.,
thought they could create a single ISA
that would efficiently unify all four of
these ISA bases.

They needed a technical solution
for how computers as inexpensive as

WE BEGAN OUR Turing Lecture June 4, 201811 with a review
of computer architecture since the 1960s. In addition
to that review, here, we highlight current challenges
and identify future opportunities, projecting another
golden age for the field of computer architecture in
the next decade, much like the 1980s when we did the
research that led to our award, delivering gains in cost,
energy, and security, as well as performance.

“Those who cannot remember the past are condemned
to repeat it.” —George Santayana, 1905

Software talks to hardware through a vocabulary
called an instruction set architecture (ISA). By the early
1960s, IBM had four incompatible lines of computers,
each with its own ISA, software stack, I/O system,
and market niche—targeting small business, large
business, scientific, and real time, respectively. IBM

A New Golden
Age for
Computer
Architecture

DOI:10.1145/3282307

Innovations like domain-specific hardware,
enhanced security, open instruction sets, and
agile chip development will lead the way.

BY JOHN L. HENNESSY AND DAVID A. PATTERSON

 key insights
 ! Software advances can inspire

architecture innovation.

 ! Elevating the hardware/software
interface creates opportunities for
architecture innovation.

 ! The marketplace ultimately settles
architecture debates.

turing lecture

Hennessy and Patterson

 How are we going to program new specialised  
 hardware architectures?

2

High-Level DSLs and Code Generators

Promise

• Programs are written in a simple 
high-level language

• achieve high-performance "for free" 

Challenge 

• How to keep pace with the increasingly  
 faster changing hardware architectures?

Halide

Fireiron

RISE

LIFT

Futhark

Dex

Accelerate

3

NVIDIA Tensor Cores
A case study of specialised hardware

• Specialised hardware units that perform 
a 4x4 matrix-matrix-multiply-add

• The V100 GPU with Tensor Cores can 
perform this calculation at 12x faster rate 
than the Tesla P100 without Tensor Cores

• CUDA offers a warp-level API for exploiting Tensor Cores

4

CUDA API for Tensor Cores

• Tensor Cores operate on 
fragments of the overall matrix

• mma_sync performs the matrix-
matrix-multiply-add on the fragments

• load/store_matrix_sync  
load/store a fragment from global
memory.

• fill_fragment writes a
constant value into the fragment

5

Adding support for Tensor Cores in Halide?

6

Adding support for Tensor Cores in Halide?

7

Adding support for Tensor Cores in Halide?

8

Adding support for Tensor Cores in Halide?

9

Adding support for Tensor Cores in Halide?

10

RISE & Shine an extensible compiler design
RISE

RISE

ELEVATE

OpenMP OpenCL …

RISE

ELEVATE

Domain-Specific
Extension

Hardware-Specific
Extension

High-Level
Program

Low-Level
Program

Low-Level Code

Optimization
Strategy

Computational
Patterns

map reduce
split join …

 Strategy
Combinators
seq try
dfsTraversal …

Computational
Patterns

stencil
conv3x3 …

Optimisation
Strategies

tiling
separability
winograd …

Computational
Patterns

mapSeq mapPar
mapVect asVect
matrixMult4x4 …

 Optimisation
Strategies

vectorize
doRegRotation
pipeline …

Rewriting

Code Generation

11

https://rise-lang.org/

• Spiritual successor to the 
LIFT project

• Computations are 
expressed by 
computational patterns

• Optimisations are described 
as compositions 
of rewrite rules

[CGO'21, CC'21, ICFP'20]

https://rise-lang.org/

GEMM in RISE

12

GEMM in RISE High-Level 
functional primitives

13

GEMM in RISE High-Level 
functional primitives

Low-Level 
functional primitives 14

GEMM in RISE High-Level 
functional primitives

Low-Level 
functional primitives

Low-Level 
imperative primitives

15

GEMM in RISE High-Level 
functional primitives

Low-Level 
functional primitives

Low-Level 
imperative primitives

Low-Level 
imperative code

16

Systematically Extending RISE with Support for Tensor Cores

Bottom-up approach:

1. Add new low-level imperative primitives corresponding to the CUDA Tensor Core API 
and implement for these primitives.

2. Add low-level functional primitives 
and implement to their imperative counterparts

3. Add rewrite rules to enable exploiting Tensor Cores via

17

1. Low-level imperative primitives and

• Direct representation of CUDA API as imperative primitives in RISE

• Fragment types needed to be added to RISE

• Code generation is straightforward

18

2. Low-level functional primitives and

• One low-level functional primitive per imperative primitive

• Functional primitives have return values, rather than returning nothing (i.e. void/Comm)

• loading / storing a fragment corresponds to turning a matrix into a fragment (and reverse)

imperative primitivesfunctional primitives

19

2. Low-level functional primitives and
• Translation by adding one case for each 

low-level functional primitive

• The "acceptor translation" accT 
translates a functional expression 
who's result is written to output

• The "continuation translation" conT 
translates a functional expression 
by passing the translated expression 
to a continuation that continues the
translation

• More details on the translations in

https://arxiv.org/pdf/2201.03611.pdf
20

https://arxiv.org/pdf/2201.03611.pdf

3. Add rewrite rules to enable

• Rewrite rules enable automatic
exploitation of Tensor Cores

• Examples shows automatic use of
Tensor Cores for high-level matrix
multiplication code

• Rewrite rules can be applied
automatically [GPGPU'16, ICFP'15],
manually [ICFP'20], or 
guided [arXiv:2111.13040].

21

Performance Evaluation

Competitive performance to manually optimised CUDA code. 
Within 36% of cuBLAS (on average only 10% slower).

22

 Systematically Extending a High-Level Code Generator with Support for Tensor Cores  

23

michel.steuwer@ed.ac.uk https://michel.steuwer.info/

Lukas Siefke, Bastian Köpcke, Sergei Gorlatch (University of Münster), 
and Michel Steuwer (University of Edinburgh)

• RISE demonstrates an extensible compiler design allowing targeting specialised hardware

• Progressive compilation is a good idea: 
High-level functional primitives via to 
low-level functional primitives via to 
low-level imperative primitives via to 
low-level imperative code.

• Performance evaluation shows that automatically generated code 
is competitive to manually optimised code 

https://rise-lang.org/

mailto:michel.steuwer@ed.ac.uk
https://michel.steuwer.info/
https://rise-lang.org/

