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MODERN DSL COMPILER 
DEVELOPMENT WITH MLIR
or: How to design the next 700 optimizing compilers
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Halide Devito

How do we build compilers to (automatically) optimise 
specialised software for specialized hardware?
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How Do We Currently Build Specialized Compilers?
Example 1: TensorFlow

􀁎 >2,500,000 lines of code 

􀁎 >500 different types of expressions represented in the TF IR 

􀁎 >50 different types of expression represented in the XLA IR 

􀁎 Compiler implemented in Python & C++ makes it hard to contribute 

􀁌 Great Performance & Support for custom hardware: TPU

XLA

Hughe effort to build and maintain, but delivering great performance

Popular machine learning framework 
developed by Google (and others)
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How can we benefit from the investment 
in ML compilers and reuse 

intermediate representations & optimizations 
across compilers?
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MLIR — Multi-Level Intermediate Representation
A LLVM subproject for building reusable and extensible compiler infrastructure

• MLIR is a (fairly) novel framework to facilitate the 
sharing of compiler intermediate representations (IRs) 
and optimizations 

• Common abstractions are bundled in Dialects that can 
easily be combined to express programs at various levels 

• Examples of dialects are: 

• tf - Tensor Flow abstractions 

• affine - Polyhedral abstractions 

• gpu - GPU abstractions

MLIR
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MLIR — Multi-Level Intermediate Representation
Example: Matrix Multiplication in MLIR

func @matmul_square(%A: memref<?x?xf32>, 
                    %B: memref<?x?xf32>, 
                    %C: memref<?x?xf32>) { 
  %n = dim %A, 0 : memref<?x?xf32> 
 
  affine.for %i = 0 to %n { 
    affine.for %j = 0 to %n { 
      store 0, %C[%i, %j]       : memref<?x?xf32> 
      affine.for %k = 0 to %n { 
        %a    = load %A[%i, %k] : memref<?x?xf32> 
        %b    = load %B[%k, %j] : memref<?x?xf32> 
        %prod = mulf %a, %b     : f32 
        %c    = load %C[%i, %j] : memref<?x?xf32> 
        %sum  = addf %c, %prod  : f32 
        store %sum, %C[%i, %j]  : memref<?x?xf32> 
      } 
    } 
  } 
  return 
}
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MLIR — Multi-Level Intermediate Representation
Example: Matrix Multiplication in MLIR

func @matmul_square(%A: memref<?x?xf32>, 
                    %B: memref<?x?xf32>, 
                    %C: memref<?x?xf32>) { 
  %n = dim %A, 0 : memref<?x?xf32> 
 
  affine.for %i = 0 to %n { 
    affine.for %j = 0 to %n { 
      store 0, %C[%i, %j]       : memref<?x?xf32> 
      affine.for %k = 0 to %n { 
        %a    = load %A[%i, %k] : memref<?x?xf32> 
        %b    = load %B[%k, %j] : memref<?x?xf32> 
        %prod = mulf %a, %b     : f32 
        %c    = load %C[%i, %j] : memref<?x?xf32> 
        %sum  = addf %c, %prod  : f32 
        store %sum, %C[%i, %j]  : memref<?x?xf32> 
      } 
    } 
  } 
  return 
}

Operations 
represent computations

Attributes 
represent additional 

static information

Types 
ensure consistency 

of the overall program

Regions & Blocks 
allow sequencing 

and nesting of operations
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MLIR — Multi-Level Intermediate Representation
Progressive Lowering from Application Domain to Hardware

%x = tf.Conv2d(%input, %filter) {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}  
      : (tensor!<*xf32>, tensor!<*xf32>) !-> tensor!<*xf32>

affine.for %i = 0 to %n { 
  … 
  %sum  = addf %a, %b : f32 
  … 
}

gpu.launch(%gx,%gy,%c1,%lx,%c1,%c1) { 
  ^bb0(%bx: index, %by: index, %bz: index, 
       %tx: index, %ty: index, %tz: index, 
       %num_bx: index, %num_by: index, %num_bz: index, 
       %num_tx: index, %num_ty: index, %num_tz: index) 
  … 
  %sum  = addf %a, %b : f32 
  … 
}
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How Do We Currently Build Specialized Compilers?
Example 2: Devito

􀁌 < 50,000 lines of code 

􀁌 Compiler implemented in Python makes it easy to contribute 

􀍶 Support for GPUs via OpenACC 

􀁎 Reimplementation of many classical loop optimizations 

􀁎 No support for hardware accelerators

Small team delivering great usability and performance, 
but limited support of advanced optimizations and hardware

Popular HPC DSL  
developed by academics (and others)

Devito
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Problem: Isolated Compiler Ecosystems
Each DSL reimplements the same IRs and optimizations

• Today, Devito and Tensor Flow share no code 

• But, there is a huge opportunity for HPC DSLs: 

• They have some common IRs 

• They perform similar optimizations 

• They could benefit from the current 
investment in ML compilers

MLIR
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xDSL: a Sidekick to MLIR
Making the MLIR ecosystem accessible and extensible from Python

• xDSL is a Python framework we develop at the 
University of Edinburgh, it shares the same IR 
format and dialects with MLIR 

• This allows for many possible use cases: 

•Python-native end-to-end compilers  

•Prototyping new compiler design ideas 

• Building tools for analysing the compilation flow 

•Pairing high-level Python DSLs with 
existing low-level MLIR dialects and optimizations 
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https:!//github.com/xdslproject/xdsl/

https://github.com/xdslproject/xdsl/


xDSL Boosts Developers Productivity
Much shorter install times                         |            Much faster recompilation times

pip install xdsl
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xDSL xDSL xDSL xDSL
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xDSL Has Reasonable Overheads Compared to MLIR
About 1 order of magnitude slower for parsing & printing 
                                                              Comparable performance for constant folding
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Use Case 1
Teaching compilation with ChocoPy
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• User: 

• Undergraduate students familiar with Python 

• Needs: 

• Quick and easy installation and build systems 

• Compile time performance is less important 

• Existing Workflows: 

• Students design ad-hoc IRs, data structures, and optimization passes 

• The xDSL Approach: 

• Students learn core concepts of SSA-based compilers and 
can easy transition to MLIR afterwards
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Use Case 2
Data-driven compiler design
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• User: 

• Compiler engineers trying to understand their code base 

• Needs: 

• Scripting languages with good data science workflows 

• Existing Workflows: 

• Lack of an integrated environment to build analysis tools 

• The xDSL Approach: 

• xDSL makes MLIR dialects easily accessible from Python 

• Provides a good environment to integrate with data science frameworks
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Use Case 2
Data-driven compiler design
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• User: 

• Compiler engineers trying to understand their code base 

• Needs: 

• Scripting languages with good data science workflows 

• Existing Workflows: 

• Lack of an integrated environment to build analysis tools 

• The xDSL Approach: 

• xDSL makes MLIR dialects easily accessible from Python 

• Provides a good environment to integrate with data science frameworks
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With xDSL we quickly analysed the test coverage of operations of various MLIR dialects 



Use Case 2
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• User: 

• Compiler engineers trying to understand their code base 

• Needs: 

• Scripting languages with good data science workflows 

• Existing Workflows: 

• Lack of an integrated environment to build analysis tools 

• The xDSL Approach: 

• xDSL makes MLIR dialects easily accessible from Python 

• Provides a good environment to integrate with data science frameworks
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Analysis of dependencies between MLIR dialects in the MLIR test suite

Data-driven compiler design



Use Case 3
Building a high-level Python DSL with existing low-level MLIR dialects
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• User: 

• Domain experts, e.g., computational scientists or database experts 

• Needs: 

• Productivity is (often) more 
important than compilation speed 

• Existing Workflows: 

• Build isolated compiler ecosystem (such as Devito) 

• The xDSL Approach: 

• Embed high-level DSL in Python for ease of use 

• Use xDSL dialects in Python and then lower to common dialects that are optimized in MLIR
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Use Case 3
Building a high-level Python DSL with existing low-level MLIR dialects
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• User: 

• Domain experts, e.g., computational scientists or database engineers 

• Needs: 

• Productivity and familiarity is (often) more 
important than compilation speed 

• Existing Workflows: 

• Build isolated compiler ecosystem (such as Devito) 

• The xDSL Approach: 

• Build high-level DSL interface in Python 

• Use xDSL dialects in Python and then lower to common dialects that are optimized in MLIR
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We implemented a database DSL 
using xDSL outperforming the 
in-memory database DuckDB 

Reduction of basetable 
column accesses implemented 

as a compiler optimization pass 
in Python with xDSL

We currently work 
with colleagues from 
Imperial to integrate 

Devito & MLIR 
with xDSL
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Use Case 4
Prototyping new MLIR features 
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• User: 

• Compiler researchers and engineers 

• Needs: 

• Prototyping many design; quick incremental build times 

• Existing Workflows: 

• Directly modify MLIR and LLVM which is time consuming 

• The xDSL Approach: 

• Prototype new ideas in Python with xDSL 

• Integrate with MLIR for realistic tests and benchmarks
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How To Optimize Programs in MLIR Today?

• MLIR provides an infrastructure to express program transformations as Pattern Rewrites 

• Such rewrites are performed once a pattern has matched in the code 

• Example: splitting a loop:
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Pattern Rewrite in MLIR
Example: Loop splitting

22



Pattern Rewrite in MLIR
Example: Loop splitting
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1. Implement C++ class inheriting from Pattern Rewriter interface

2. Match 
operation

3. Create 
replacement

4. Erase 
matched 
operation



Composing Rewrites?
How to perform a sequence of rewrites? 
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• Example: splitting a loop + unrolling the second (+ vectorizing first) + … 

􀁎 In MLIR no way to describe locations of rewrites; Usually greedily applied everywhere  

􀁎 What if a rewrite fails halfway through? Mutating rewrites make backtracking difficult



ELEVATE — a Language for Composing Rewrites
Based on 􀈿 ICFP 2020 Paper: Achieving high-performance the functional way: 
                                                        a functional pearl on expressing high-performance optimizations as rewrite strategies 
by Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, Michel Steuwer

• We think of a Rewrite as function with a specific type: 
Either returning the transformed IR of the input program, or returning a Failure. 
 
 

• The rewrite must be immutable, i.e., they don’t modify directly the input program 

• Immutable rewrites with this type compose nicely into larger rewrites! 

• To prototype ELEVATE in MLIR: we implemented an immutable version of the MLIR IR in xDSL 

• We describe individual rewrite rules in a declarative MLIR dialect itself!
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type Rewrite = IR !=> IR | Failure



ELEVATE Rewrite in MLIR
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1. We use the (extended) pdl 
    dialect to match the input %op 

2. The created replacement 
     replaces the matched 
     root operation

3. If %cst2 has no uses 
     it will be automatically 
     removed

Example 1: Simple arithmetic rewrite

x * 2 􀄫 x !>> 1



ELEVATE Rewrite in MLIR
Example 2: Loop Splitting
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Rewrite Computational IR



ELEVATE Rewrite in MLIR
Example 3: Stencil inlining
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Optimization implemented in the Open Earth Compiler (https://github.com/spcl/open-earth-compiler/ )

https://github.com/spcl/open-earth-compiler/


ELEVATE Rewrite in MLIR
Example 3: Stencil inlining

…
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Matching of two successive stencil operations



ELEVATE Rewrite in MLIR
Example 3: Stencil inlining

…

Our declarative rewrite replaces about 400 lines of imperative C++ code!
https://github.com/spcl/open-earth-compiler/blob/master/lib/Dialect/Stencil/StencilInliningPass.cpp
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https://github.com/spcl/open-earth-compiler/blob/master/lib/Dialect/Stencil/StencilInliningPass.cpp


Combinators and Traversals in ELEVATE

• Combinators allow to build more complex strategies from simple once, e.g.: 

• s1;s2 (Sequential Composition): apply second strategy s1 to result of the first s2 

• try {s1} else {s2} (Left Choice): apply second strategy s2 if first strategy s1 fails 

• Traversals allow to describe precise locations in the IR, e.g.: 

• top_to_bottom {s}: apply strategy s to the IR line by line, top to bottom 

• regionN[n]{s}, blockN[n]{s}, opN[n]{s}: apply strategy s to n-th region/block/op
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Composing Rewrites in ELEVATE

rewrite.strategy @split_and_unroll_snd() { 
  rewrite.apply @split_loop 
  rewrite.top_to_bottom { 
  rewrite.skip 1 { 
    rewrite.if "scf.for" { 
      rewrite.apply @unroll_loop 
    } 
  } 
}

32

sequential composition

traversals & predicates to describe locations



Use Cases for Composable Rewrites
Detection of Layers in ML models

• Enables experts to optimize ML layers specially 

• Many slightly different cases could easily be 
described by composing individual rewrites 

• Imperative C++ or Python matching code written 
by expert compiler engineers, e.g., at Microsoft
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Detect 
Attention 

Layer

200 lines of arbitrary 
imperative Python code

%FuseAttentionLayer : !strategy = elevate.strategy() ["strategy_name"="FuseAttentionLayer"] {
    ^strategy(%op : !operation):
    %pattern : !pattern = match.pattern() {
      // input to the attention layer
      %layer_norm_cst_0 : !value = pdl.operand()
      %layer_norm_cst_weight : !value = pdl.operand()
      %layer_norm_cst_bias : !value = pdl.operand() []

      (%add2, %add2_result) = pdl.operation() ["name"="onnx.Add"]
      (%layer_norm1, %layer_norm1_result) = pdl.operation(%add2_result, %layer_norm_cst_weight, %layer_norm_cst_bias) ["name"="onnx.Custom", "function_name" = "LayerNormalization"]

      // detect mask nodes
      %input_mask = pdl.operand() []
      (%unsqueeze1_mask, %unsqueeze1_mask_result) = pdl.operation(%input_mask : !value) ["name"="onnx.Unsqueeze"]
      (%unsqueeze0_mask, %unsqueeze0_mask_result) = pdl.operation(%unsqueeze1_mask_result : !value) ["name"="onnx.Unsqueeze"]
      (%cast_mask, %cast_mask_result) = pdl.operation(%unsqueeze0_mask_result : !value) ["name"="onnx.Cast"]
      %sub_cst = pdl.operand() []

< 100 lines of declarative dialect 
could easily be generated

• Declarative rewrite written by PhD student



Use Cases for Composable Rewrites
Halide-Style Schedules as composition of rewrites

• ICFP 2020 􀈿 paper demonstrates how to use 
combinators and traversals to build a Schedule 
describing a specific way to optimize a program 

• Gives performance experts precise control over 
the optimizations applied to a program

􀈿 ICFP 2020
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ELEVATE



Use Cases for Composable Rewrites
Halide-Style Schedules as composition of rewrites

• ICFP 2020 􀈿 expresses equivalent TVM schedules 
purely as compositions of rewrites in ELEVATE 

• Demonstrate same performance as TVM compiler

35

􀈿 ICFP 2020



What’s Next for ELEVATE in MLIR?
Bring all of ELEVATE capabilities to MLIR for expressing rewrites as compositions
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• We have a working prototype implementation in xDSL, we are interested in a C++ MLIR implementation 

• xDSL is a great prototyping framework! 

• Overheads of immutable rewriting are reasonable for many use cases 

• Rewriting with an immutable IR is much more efficient than naive cloning for supporting backtracking



Summary
xDSL — a Python Sidekick to MLIR  |  ELEVATE — a language for composing rewrites
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• MLIR provides great opportunities to share compiler infrastructure 

• Many DSL developers prefer Python and are not part of the MLIR ecosystem 

• xDSL — a sidekick of MLIR enables many deeply integrated use cases leveraging MLIR 

• ELEVATE — a language for composing rewrites allows describing complex optimizations easily 
                         and opens up interesting use cases by providing control over the rewrite process



Michel Steuwer — Modern DSL Compiler Development With MLIR
xDSL — a Python Sidekick to MLIR  |  ELEVATE — a language for composing rewrites
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michel.steuwer@ed.ac.uk

https:!//github.com/xdslproject/xdsl/ https://elevate-lang.org

https://michel.steuwer.info
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xDSL 􀈿 ICFP 2020

rewrite.strategy @split_and_unroll_snd() { 
  rewrite.apply @split_loop 
  rewrite.top_to_bottom { 
  rewrite.skip 1 { 
    rewrite.if "scf.for" { 
      rewrite.apply @unroll_loop 
    } 
  } 
}
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