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Achieving High-Performance the Functional Way

k = tvm.reduce_axis((0, K), 'k')

A = tvm.placeholder((M, K), name='A')

B = tvm.placeholder((K, N), name='B')

C = tvm.compute((M, N), lambda x, y: 

 tvm.sum(A[x, k] * B[k, y], axis=k),

 name='C')


# blocking version

xo, yo, xi, yi = s[C].tile(

  C.op.axis[0],C.op.axis[1],32,32)

k,     = s[C].op.reduce_axis

ko, ki = s[C].split(k, factor=4)

s[C].reorder(xo, yo, ko, ki, xi, yi)


Decoupled
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Achieving High-Performance the Functional Way

k = tvm.reduce_axis((0, K), 'k')

A = tvm.placeholder((M, K), name='A')

B = tvm.placeholder((K, N), name='B')

C = tvm.compute((M, N), lambda x, y: 

 tvm.sum(A[x, k] * B[k, y], axis=k),

 name='C')


# "parallel schedule

s = tvm.create_schedule(C.op)

CC = s.cache_write(C, 'global')

xo, yo, xi, yi = s[C].tile(

  C.op.axis[0], C.op.axis[1], bn, bn)


s[CC].compute_at(s[C], yo)

xc, yc = s[CC].op.axis

k, = s[CC].op.reduce_axis

ko, ki = s[CC].split(k, factor=4)

s[CC].reorder(ko, xc, ki, yc)

s[CC].unroll(ki)

s[CC].vectorize(yc)

s[C].parallel(xo)

x, y, z = s[packedB].op.axis

s[packedB].vectorize(z)

s[packedB].parallel(x)


200x

Decoupled
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide 
compiler

Optimised Code

Halide
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

No clear separation
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

Program

Optimisation Schedule

Halide 
compiler

Optimised Code

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, and Michel Steuwer

practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.
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practicality to deliver the high performance required inmany
real-world applications. They lack control over the rewriting
process and the automated rewriting using stochastic search
processes takes a long time to �nd a high performance im-
plementation. In this paper, we are going to address these
practical limitations of rewrite-based approaches for optimiz-
ing high-performance real-world applications by de�ning a
strategy language that allows the de�nition of optimization
strategies that precisely controls the rewrite process.
Halide [30, 31] has introduced the concept of separating

programs into functional descriptions and schedules in the
area of high-performance domain-speci�c code generators.
A schedule describes the optimizations to be applied to the
Halide algorithm that de�nes the functional behavior of the
computation. Halide’s schedules – as well similar schedules
in TVM [12] – are implemented using a set of prede�ned
APIs that expose a �xed set of optimization options. Halide’s
authors describe these APIs as a scheduling language but it
lacks many desirable properties of a programming language.
Most crucially, programmers are not able to de�ne their own
abstractions. Even the composition of existing optimization
primitives is in some cases unintuitive due to the lack of a
clear semantics and Halide’s compiler has default and im-
plicit behavior limiting experts’ control. All of these reasons
make writing schedules in Halide signi�cantly harder than
writing algorithms. Furthermore, for some desirable opti-
mizations it is not su�cient to change the schedule but the
algorithm itself has to be rede�ned – violating the promise
of separating algorithm and schedule. In this paper, we build
upon Halide’s general idea but provide a proper functional
strategy language, called E������, with clear semantics of
individual primitives and how they compose. It enables pro-
grammers to de�ne their own abstractions for building opti-
mization strategies in a composable and reusable way.
The design of E������ is heavily inspired by research on

strategy languages for rewrite systems used in other con-
texts – and largely unknown to the high-performance code
generation community – such as Stratego [37]. Kirchner [24]
provides a recent overview of the research of the rewriting
community. We claim no novelty in the design foundations
of strategy languages but instead in the strategies we present
and their usage to facilitate the generation of highly e�cient
code on modern hardware.

Our paper makes the following key contributions:

• Description of the design of E������, a functional lan-
guage for describing optimization strategies for high-
performance code generation (Section 3);

• demonstration of E������ using three case studies: au-
tomatic di�erentiation (section 4), image processing
(section 5) and deep learning (section 6). They show
the �exibility and extensibility of E������ and experi-
mentally evaluate the practicality of a rewrite based
approach for achieving competitive high performance.

2 Motivation and Background
We motivate the need for a strategy language with a closer
look at Halide. We then argue for a more principled language
approach for describing optimizations strategies.

2.1 Halide: Decoupling Algorithm from Schedules
Halide [30] has originally been designed to generate high
performance code for image processing pipelines [31], but
has since inspired similar approaches in other contexts such
as TVM in deep leaning [12]. A crucial idea is the separation
of a program in two parts: the algorithm describing the func-
tional behavior, and the schedule specifying how the program
should be optimized by the underlying Halide compiler.

Listing 1 shows a snippet of Halide code used for generat-
ing an e�cient matrix-matrix multiplication for an Nvidia
GPU. Halide is a DSL embedded in C++, so the syntax used
here is C++. The lines 2–4 de�ne the matrix-matrix multipli-
cation computation: A and B are multiplied by performing

1 // functional description of matrix multiplication
2 Var x("x"), y("y"); Func prod("prod"); RDom r(�, size);
3 prod(x, y) �� A(x, r) * B(r, y);
4 out(x, y) � prod(x, y);
5
6 // schedule for Nvidida GPUs
7 const int warp_size � ��; const int vec_size � �;
8 const int x_tile � �; const int y_tile � �;
9 const int y_unroll � �; const int r_unroll � �;
10 Var xi,yi,xio,xii,yii,xo,yo,x_pair,xiio,ty; RVar rxo,rxi;
11 out.bound(x, �, size).bound(y, �, size)
12 .tile(x, y, xi, yi, x_tile * vec_size * warp_size,
13 y_tile * y_unroll)
14 .split(yi, ty, yi, y_unroll)
15 .vectorize(xi, vec_size)
16 .split(xi, xio, xii, warp_size)
17 .reorder(xio, yi, xii, ty, x, y)
18 .unroll(xio).unroll(yi)
19 .gpu_blocks(x, y).gpu_threads(ty).gpu_lanes(xii);
20 prod.store_in(MemoryType::Register).compute_at(out, x)
21 .split(x, xo, xi, warp_size * vec_size, RoundUp)
22 .split(y, ty, y, y_unroll)
23 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
24 .unroll(xo).unroll(y).update()
25 .split(x, xo, xi, warp_size * vec_size, RoundUp)
26 .split(y, ty, y, y_unroll)
27 .gpu_threads(ty).unroll(xi, vec_size).gpu_lanes(xi)
28 .split(r.x, rxo, rxi, warp_size)
29 .unroll(rxi, r_unroll).reorder(xi, xo, y, rxi, ty, rxo)
30 .unroll(xo).unroll(y);
31 Var Bx � B.in().args()[�], By � B.in().args()[�];
32 Var Ax � A.in().args()[�], Ay � A.in().args()[�];
33 B.in().compute_at(prod, ty).split(Bx, xo, xi, warp_size)
34 .gpu_lanes(xi).unroll(xo).unroll(By);
35 A.in().compute_at(prod, rxo).vectorize(Ax, vec_size)
36 .split(Ax,xo,xi,warp_size).gpu_lanes(xi).unroll(xo)
37 .split(Ay,yo,yi,y_tile).gpu_threads(yi).unroll(yo);
38 A.in().in().compute_at(prod, rxi).vectorize(Ax, vec_size)
39 .split(Ax, xo, xi, warp_size).gpu_lanes(xi)
40 .unroll(xo).unroll(Ay);

Listing 1.Matrixmatrixmultiplcation inHalide. Lines 2–
4 de�ne the computation A⇥B, the other lines de�ne the
schedule specifying the optimizations to be applied by
the compiler. From: h�ps://github.com/halide/Halide/blob/master/apps/

cuda_mat_mul/mat_mul_generator.cpp.

We should aim for more principled ways to describe and apply optimisations
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1. Separate concerns 
Computations should be expressed at a high abstraction level only. 
They should not be changed to express optimizations; 

2. Facilitate reuse 
Optimization strategies should be defined clearly separated from the computational program facilitating 
reusability of computational programs and strategies; 

3. Enable composability 
Computations and strategies should be written as compositions of user-defined building blocks (possibly 
domain-specific ones); both languages should facilitate the creation of higher-level abstractions;  

4. Allow reasoning 
Computational patterns, but also especially strategies, should have a precise, well-defined semantics allowing 
reasoning about them;  

5. Be explicit 
Implicit default behavior should be avoided to empower users to be in control. 

The Need for a Principled Way to Separate, Describe and Apply Optimizations 
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Fundamentally we argue that a more principled high-performance 

code generation approach should be holistic by considering 
computation and optimization strategies equally important. 

 
As a consequence, a strategy language should be built with the 

same standards as a language describing computation. 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based on Lift 
[ICFP 2015] by Steuwer et. al.

based on Stratego 
[ICFP 1998] by Visser et. al.



ELEVATE A Language for Describing Optimisation Strategies

• A Strategy encodes a program transformation as a function: 
 

• A RewriteResult encodes its success or failure:

type Strategy[P] = P => RewriteResult[P]

RewriteResult[P] = Success[P](p: P)

                 | Failure[P](s: Strategy[P])

18



Rewrite Rules in ELEVATE 
• Rewrite rules are basic strategies

def mapFusion: Strategy[Rise] =

  (p: Rise) => p match {

    case app(app(map, f),

         app(app(map, g), xs)) =

      Success( map(fun(x => f(g(x))), xs) )

    case _ = Failure(mapFusion)

}

mapFusion( ) =

19



Combinators in ELEVATE 
• Building more complex strategies from simpler once


• Sequential Composition (;)


• Left Choice (<+)


• Try


• Repeat

def seq[P]: Strategy[P] => Strategy[P] => Strategy[P] =

        fs => ss => p => fs(p).flatMapSuccess(ss)

def lChoice[P]: Strategy[P] => Strategy[P] => Strategy[P] =

        fs => ss => p => fs(p).flatMapFailure(_ => ss(p))

def try[P]: Strategy[P] => Strategy[P] =

        s => p => (s <+ id)(p)

def repeat[P]: Strategy[P] => Strategy[P] =

        s => p => try(s ; repeat(s))(p)

20



Traversals in ELEVATE 
• Describing Precise Locations

mapFusion (                   ) = ? 

threemaps =
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Traversals in ELEVATE 
• Describing Precise Locations

body(mapFusion) (                   ) = ? 

threemaps =
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def body: Strategy[Rise] => Strategy[Rise] =

 s => p => p match {

  case fun(x,b) => s(b).mapSuccess(nb => 
fun(x,nb))

  case _ => Failure( body(s) )

}



Traversals in ELEVATE 
• Describing Precise Locations

body(argument(mapFusion)) (                   ) = ? 

threemaps =

def body: Strategy[Rise] => Strategy[Rise] =

 s => p => p match {

  case fun(x,b) => s(b).mapSuccess(nb => 
fun(x,nb))

  case _ => Failure( body(s) )

}

def argument: Strategy[Rise] => Strategy[Rise] =

 s => p => p match {

  case app(f,a) => s(a).mapSuccess(na => 
app(f,na))

  case _ => Failure( argument(s) )

}

23



Complex Traversals + Normalization in ELEVATE 
• With three basic generic traversals


• we define more complex traversals: 

• With these traversals we define normal forms, e.g. 𝛽𝜂-normal-form:

24



Complex optimisations defined as strategies

25

def tile: Int -> Int -> Strategy =

  (dim) => (n) => dim match {

    case 1 = function(splitJoin(n)) 

    case 2 = fmap(function(splitJoin(n))) ; 

             function(splitJoin(n)) ; interchange(2)

    case i = fmap(tile(dim-1, n)) ;

             function(splitJoin(n)) ; interchange(n)

  }

Tiling defined as composition of rewrites not a built-in!



Case Study: Implementing TVM's Scheduling API

200x

• We attempt to express the same optimizations described in the TVM tutorial:
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Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

RISE

Baseline Strategy
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Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

RISE

Baseline Strategy

Clear separation of concerns

Implicit behaviorBe explicit

Enable composability
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Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Loop Permutation with blocking Strategy
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Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Loop Permutation with blocking Strategy

User-defined vs. build in
Facilitate reuse

No clear separation 
of concerns
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Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Array Packing Strategy
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Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

ELEVATE

Array Packing Strategy

Clear separation of concerns No clear separation of concernsvs

Facilitate reuse
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Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

Number of successful rewrite steps 
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Rewrite based approach scales to complex optimizations

Rewriting took less than 2 seconds with our unoptimised implementation



Optimizing Matrix Matrix Multiplication with ELEVATE Strategies

Performance of generated code
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Competitive performance compared to TVM compiler



Types for ELEVATE?

􀁝 Can we build a type system for ELEVATE 
      to statically reject bad compositions 
      of rewrites?


Ongoing work using row-polymorphic 
types for this.


Preliminary result in an arXiv paper: 
https://arxiv.org/abs/2103.13390

https://arxiv.org/abs/2103.13390


Sketch-Guided Equality Saturation
Automation vs. Manual control

Talk by Thomas Kœhler earlier this week at the E-Graph workshop. Paper: https://arxiv.org/abs/2111.13040

􀛮 Idea: 
     Describe rewrite goal rather than rewrite sequence:

A sketch describes 
a desired program shape

All optimizations from this paper 
are found in  < 7 seconds automatically

36

Break intractable equality saturation search 
into multi tractable one, by human guidance.

https://arxiv.org/abs/2111.13040
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